We propose a generative framework, FaceLit, capable of generating a 3D face that can be rendered at various user-defined lighting conditions and views, learned purely from 2D images in-the-wild without any manual annotation. Unlike existing works that require careful capture setup or human labor, we rely on off-the-shelf pose and illumination estimators. With these estimates, we incorporate the Phong reflectance model in the neural volume rendering framework. Our model learns to generate shape and material properties of a face such that, when rendered according to the natural statistics of…Apple Machine Learning Research