In recent years, artificial intelligence agents have succeeded in a range of complex game environments. For instance, AlphaZero beat world-champion programs in chess, shogi, and Go after starting out with knowing no more than the basic rules of how to play. Through reinforcement learning (RL), this single system learnt by playing round after round of games through a repetitive process of trial and error. But AlphaZero still trained separately on each game — unable to simply learn another game or task without repeating the RL process from scratch. The same is true for other successes of RL, such as Atari, Capture the Flag, StarCraft II, Dota 2, and Hide-and-Seek. DeepMind’s mission of solving intelligence to advance science and humanity led us to explore how we could overcome this limitation to create AI agents with more general and adaptive behaviour. Instead of learning one game at a time, these agents would be able to react to completely new conditions and play a whole universe of games and tasks, including ones never seen before.Read More