Recurrent Drafter for Fast Speculative Decoding in Large Language Models

We present Recurrent Drafter (ReDrafter), an advanced speculative decoding approach that achieves state-of-the-art speedup for large language models (LLMs) inference. The performance gains are driven by three key aspects: (1) leveraging a recurrent neural network (RNN) as the draft model conditioning on LLM’s hidden states, (2) applying a dynamic tree attention algorithm over beam search results to eliminate duplicated prefixes in candidate sequences, and (3) training through knowledge distillation from the LLM. ReDrafter accelerates Vicuna inference in MT-Bench by up to 3.5x with a PyTorch…Apple Machine Learning Research