ARMOR: Egocentric Perception for Humanoid Robot Collision Avoidance and Motion Planning

Humanoid robots have significant gaps in their sensing and perception, making it hard to perform motion planning in dense environments. To address this, we introduce ARMOR, a novel egocentric perception system that integrates both hardware and software, specifically incorporating wearable-like depth sensors for humanoid robots. Our distributed perception approach enhances the robot’s spatial awareness, and facilitates more agile motion planning. We also train a transformer-based imitation learning (IL) policy in simulation to perform dynamic collision avoidance, by leveraging around 86 hours…Apple Machine Learning Research