Transformer-based Model for ASR N-Best Rescoring and Rewriting

Voice assistants increasingly use on-device Automatic Speech Recognition (ASR) to ensure speed and privacy. However, due to resource constraints on the device, queries pertaining to complex information domains often require further processing by a search engine. For such applications, we propose a novel Transformer based model capable of rescoring and rewriting, by exploring full context of the N-best hypotheses in parallel. We also propose a new discriminative sequence training objective that can work well for both rescore and rewrite tasks. We show that our Rescore+Rewrite model outperforms…Apple Machine Learning Research

Time Sensitive Knowledge Editing through Efficient Finetuning

Large Language Models (LLMs) have demonstrated impressive capability in different tasks and are bringing transformative changes to many domains. However, keeping the knowledge in LLMs up-to-date remains a challenge once pretraining is complete. It is thus essential to design effective methods to both update obsolete knowledge and induce new knowledge into LLMs. Existing locate-and-edit knowledge editing (KE) method suffers from two limitations. First, the post-edit LLMs by such methods generally have poor capability in answering complex queries that require multi-hop reasoning. Second, the…Apple Machine Learning Research

Hypernetworks for Personalizing ASR to Atypical Speech

*Equal Contributors
Parameter-efficient fine-tuning (PEFT) for personalizing automatic speech recognition (ASR) has recently shown promise for adapting general population models to atypical speech. However, these approaches assume a priori knowledge of the atypical speech disorder being adapted for — the diagnosis of which requires expert knowledge that is not always available. Even given this knowledge, data scarcity and high inter/intra-speaker variability further limit the effectiveness of traditional fine-tuning. To circumvent these challenges, we first identify the minimal set of model…Apple Machine Learning Research

Server-side Rescoring of Spoken Entity-centric Knowledge Queries for Virtual Assistants

On-device Virtual Assistants powered by Automated Speech Recognition (ASR) require effective knowledge integration for the challenging entity-rich query recognition.
In this paper, we conduct an empirical study of modeling strategies for server-side rescoring of spoken information domain queries using various categories of Language Models (N-Gram word Language Models, sub-word neural LMs).
We investigate the combination of on-device and server-side signals, and demonstrate significant WER improvements of 23%-35% on various entity-centric query subpopulations
by integrating various server-side…Apple Machine Learning Research

Improved Modelling of Federated Datasets using Mixtures-of-Dirichlet-Multinomials

In practice, training using federated learning can be orders of magnitude slower than standard centralized training. This severely limits the amount of experimentation and tuning that can be done, making it challenging to obtain good performance on a given task. Server-side proxy data can be used to run training simulations, for instance for hyperparameter tuning. This can greatly speed up the training pipeline by reducing the number of tuning runs to be performed overall on the true clients. However, it is challenging to ensure that these simulations accurately reflect the dynamics of the…Apple Machine Learning Research

Evaluating the IWSLT2023 Speech Translation Tasks: Human Annotations, Automatic Metrics, and Segmentation

Human evaluation is a critical component in machine translation system development and has received much attention in text translation research. However, little prior work exists on the topic of human evaluation for speech translation, which adds additional challenges such as noisy data and segmentation mismatches. We take first steps to fill this gap by conducting a comprehensive human evaluation of the results of several shared tasks from the last International Workshop on Spoken Language Translation (IWSLT 2023). We propose an effective evaluation strategy based on automatic resegmentation…Apple Machine Learning Research

AGRaME: Any Granularity Ranking with Multi-Vector Embeddings

Ranking is a fundamental and popular problem in search. However, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility in granularity negatively affects many applications that can benefit from more granular ranking, such as sentence-level ranking for open-domain question-answering, or proposition-level ranking for attribution. In this work, we introduce the idea of any-granularity ranking which leverages multi-vector approaches to rank at varying levels of…Apple Machine Learning Research

Entity Disambiguation via Fusion Entity Decoding

Entity disambiguation (ED), which links the mentions of ambiguous entities to their referent entities in a knowledge base, serves as a core component in entity linking (EL). Existing generative approaches demonstrate improved accuracy compared to classification approaches under the standardized ZELDA benchmark. Nevertheless, generative approaches suffer from the need for large-scale pre-training and inefficient generation. Most importantly, entity descriptions, which could contain crucial information to distinguish similar entities from each other, are often overlooked. We propose an…Apple Machine Learning Research