Hand gesture recognition is becoming a more prevalent mode of human-computer interaction, especially as cameras proliferate across everyday devices. Despite continued progress in this field, gesture customization is often underexplored. Customization is crucial since it enables users to define and demonstrate gestures that are more natural, memorable, and accessible. However, customization requires efficient usage of user-provided data. We introduce a method that enables users to easily design bespoke gestures with a monocular camera from one demonstration. We employ transformers and…Apple Machine Learning Research
GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
Recent advancements in Large Language Models (LLMs) have sparked interest in their formal reasoning capabilities, particularly in mathematics. The GSM8K benchmark is widely used to assess the mathematical reasoning of models on grade-school-level questions. While the performance of LLMs on GSM8K has significantly improved in recent years, it remains unclear whether their mathematical reasoning capabilities have genuinely advanced, raising questions about the reliability of the reported metrics. To address these concerns, we conduct a large-scale study on several SOTA open and closed models. To…Apple Machine Learning Research
On the Limited Generalization Capability of the Implicit Reward Model Induced by Direct Preference Optimization
Reinforcement Learning from Human Feedback (RLHF) is an effective approach for aligning language models to human preferences. Central to RLHF is learning a reward function for scoring human preferences. Two main approaches for learning a reward model are 1) training an explicit reward model as in RLHF, and 2) using an implicit reward learned from preference data through methods such as Direct Preference Optimization (DPO). Prior work has shown that the implicit reward model of DPO can approximate a trained reward model, but it is unclear to what extent DPO can generalize to distribution…Apple Machine Learning Research
When is Multicalibration Post-Processing Necessary?
Calibration is a well-studied property of predictors which guarantees meaningful uncertainty estimates. Multicalibration is a related notion — originating in algorithmic fairness — which requires predictors to be simultaneously calibrated over a potentially complex and overlapping collection of protected subpopulations (such as groups defined by ethnicity, race, or income). We conduct the first comprehensive study evaluating the usefulness of multicalibration post-processing across a broad set of tabular, image, and language datasets for models spanning from simple decision trees to 90…Apple Machine Learning Research
Contrastive Localized Language-Image Pre-Training
Contrastive Language-Image Pre-training (CLIP) has been a celebrated method for training vision encoders to generate image/text representations facilitating various applications. Recently, CLIP has been widely adopted as the vision backbone of multimodal large language models (MLLMs) to connect image inputs for language interactions. The success of CLIP as a vision-language foundation model relies on aligning web-crawled noisy text annotations at image levels. Nevertheless, such criteria may become insufficient for downstream tasks in need of fine-grained vision representations, especially…Apple Machine Learning Research
Improving How Machine Translations Handle Grammatical Gender Ambiguity
Machine Translation (MT) enables people to connect with others and engage with content across language barriers. Grammatical gender presents a difficult challenge for these systems, as some languages require specificity for terms that can be ambiguous or neutral in other languages. For example, when translating the English word “nurse” into Spanish, one must decide whether the feminine “enfermera” or the masculine “enfermero” is appropriate. However, particularly when contextual clues are absent, such as in translating a single sentence, a model cannot determine which would be correct. This…Apple Machine Learning Research
Depth Pro: Sharp Monocular Metric Depth in Less Than a Second
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines…Apple Machine Learning Research
Misty: UI Prototyping Through Interactive Conceptual Blending
UI prototyping often involves iterating and blending elements from examples such as screenshots and sketches, but current tools offer limited support for incorporating these examples. Inspired by the cognitive process of conceptual blending, we introduce a novel UI workflow that allows developers to rapidly incorporate diverse aspects from design examples into work-in-progress UIs. We prototyped this workflow as Misty. Through an exploratory first-use study with 14 frontend developers, we assessed Misty’s effectiveness and gathered feedback on this workflow. Our findings suggest that Misty’s…Apple Machine Learning Research
Generalizable Error Modeling for Human Data Annotation: Evidence from an Industry-Scale Search Data Annotation Program
Machine learning (ML) and artificial intelligence (AI) systems rely heavily on human-annotated data for training and evaluation. A major challenge in this context is the occurrence of annotation errors, as their effects can degrade model performance. This paper presents a predictive error model trained to detect potential errors in search relevance annotation tasks for three industry-scale ML applications (music streaming, video streaming, and mobile apps). Drawing on real-world data from an extensive search relevance annotation program, we demonstrate that errors can be predicted with…Apple Machine Learning Research
Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments
*Equal Contributors
To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models while maintaining their high-quality output. A critical aspect of compression in practice is model comparison, including tracking many compression experiments, identifying subtle changes in model behavior, and negotiating complex accuracy-efficiency trade-offs. However, existing compression tools poorly support comparison, leading to tedious and, sometimes, incomplete analyses spread across disjoint tools. To support real-world comparative workflows, we…Apple Machine Learning Research