*=Equal Contributors
Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the ML ecosystem, we introduce DataComp, a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training…Apple Machine Learning Research
Bootstrap Your Own Variance
This paper was accepted at the workshop Self-Supervised Learning – Theory and Practice at NeurIPS 2023.
*=Equal Contributors
Understanding model uncertainty is important for many applications. We propose Bootstrap Your Own Variance (BYOV), combining Bootstrap Your Own Latent (BYOL), a negative-free Self-Supervised Learning (SSL) algorithm, with Bayes by Backprop (BBB), a Bayesian method for estimating model posteriors. We find that the learned predictive std of BYOV vs. a supervised BBB model is well captured by a Gaussian distribution, providing preliminary evidence that the learned parameter…Apple Machine Learning Research
Importance of Smoothness Induced by Optimizers in FL4ASR: Towards Understanding Federated Learning for End-to-End ASR
In this paper, we start by training End-to-End Automatic Speech Recognition (ASR) models using Federated Learning (FL) and examining the fundamental considerations that can be pivotal in minimizing the performance gap in terms of word error rate between models trained using FL versus their centralized counterpart. Specifically, we study the effect of (i) adaptive optimizers, (ii) loss characteristics via altering Connectionist Temporal Classification (CTC) weight, (iii) model initialization through seed start, (iv) carrying over modeling setup from experiences in centralized training to FL…Apple Machine Learning Research
Training Large-Vocabulary Neural Language Model by Private Federated Learning for Resource-Constrained Devices
*= Equal Contributors
Federated Learning (FL) is a technique to train models using data distributed across devices. Differential Privacy (DP) provides a formal privacy guarantee for sensitive data. Our goal is to train a large neural network language model (NNLM) on compute-constrained devices while preserving privacy using FL and DP. However, the DP-noise introduced to the model increases as the model size grows, which often prevents convergence. We propose Partial Embedding Updates (PEU), a novel technique to decrease noise by decreasing payload size. Furthermore, we adopt Low Rank…Apple Machine Learning Research
Leveraging Large Language Models for Exploiting ASR Uncertainty
With the help of creative prompt engineering and in-context learning, large language models (LLMs) are known to generalize well on a variety of text-based natural language processing (NLP) tasks. However, for performing well on spoken language understanding (SLU) tasks, LLMs either need to be equipped with in-built speech modality or they need to rely on speech-to-text conversion from an off-the-shelf automation speech recognition (ASR) system. In this work, we focus on the latter setup where the accuracy of LLM on SLU tasks is constrained by the accuracy of a frozen ASR system on the given…Apple Machine Learning Research
LiDAR: Sensing Linear Probing Performance in Joint Embedding SSL Architectures
Joint embedding (JE) architectures have emerged as a promising avenue for acquiring transferable data representations. A key obstacle to using JE methods, however, is the inherent challenge of evaluating learned representations without access to a downstream task, and an annotated dataset. Without efficient and reliable evaluation, it is difficult to iterate on architectural and training choices for JE methods. In this paper, we introduce LiDAR (Linear Discriminant Analysis Rank), a metric designed to measure the quality of representations within JE architectures. Our metric addresses several…Apple Machine Learning Research
HUGS: Human Gaussian Splats
Recent advances in neural rendering have improved both training and rendering times by orders of magnitude. While these methods demonstrate state-of-the-art quality and speed, they are designed for photogrammetry of static scenes and do not generalize well to freely moving humans in the environment. In this work, we introduce Human Gaussian Splats (HUGS) that represents an animatable human together with the scene using 3D Gaussian Splatting (3DGS). Our method takes only a monocular video with a small number of (50-100) frames, and it automatically learns to disentangle the static scene and a…Apple Machine Learning Research
Multimodal Data and Resource Efficient Device-Directed Speech Detection with Large Foundation Models
*=Equal Contributors
This paper was accepted at the Efficient Natural Language and Speech Processing workshop at NeurIPS 2023.
Interactions with virtual assistants often begin with a predefined trigger phrase followed by the user command. To make interactions with the assistant more natural, we explore whether it is feasible to drop the requirement that users must begin each command with a trigger phrase. We address this task by combining the decoder signals of an automatic speech recognition (ASR) system with acoustic and lexical representations as input features to a large language model…Apple Machine Learning Research
DeepPCR: Parallelizing Sequential Operations in Neural Networks
Parallelization techniques have become ubiquitous for accelerating inference and training of deep neural networks. Despite this, several operations are still performed in a sequential manner. For instance, the forward and backward passes are executed layer-by-layer, and the output of diffusion models is produced by applying a sequence of denoising steps. This sequential approach results in a computational cost proportional to the number of steps involved, presenting a potential bottleneck as the number of steps increases. In this work, we introduce DeepPCR, a novel algorithm which parallelizes…Apple Machine Learning Research