Manifold Diffusion Fields

This paper was accepted at the Diffusion Models workshop at NeurIPS 2023.
Score-based models have quickly become the de facto choice for generative modeling of images, text and more recently molecules. However, to adapt a score-based generative modeling to these domains the score network needs to be carefully designed, hampering its applicability to arbitrary data domains. In this paper we tackle this problem by taking a textit{functional} view of data. This functional view allows to cast seemingly different domains to a common shared representation. We then re-formulate the score function to…Apple Machine Learning Research

Fast Optimal Locally Private Mean Estimation via Random Projections

We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball. Existing algorithms for this problem either incur sub-optimal error or have high communication and/or run-time complexity. We propose a new algorithmic framework, ProjUnit, for private mean estimation that yields algorithms that are computationally efficient, have low communication complexity, and incur optimal error up to a 1+o(1)-factor. Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an…Apple Machine Learning Research

4M: Massively Multimodal Masked Modeling

*=Equal Contributors
Current machine learning models for vision are often highly specialized and limited to a single modality and task. In contrast, recent large language models exhibit a wide range of capabilities, hinting at a possibility for similarly versatile models in computer vision. In this paper, we take a step in this direction and propose a multimodal training scheme called 4M. It consists of training a single unified Transformer encoder-decoder using a masked modeling objective across a wide range of input/output modalities – including text, images, geometric, and semantic…Apple Machine Learning Research

Adaptive Weight Decay

We propose adaptive weight decay, which automatically tunes the hyper-parameter for weight decay during each training iteration. For classification problems, we propose changing the value of the weight decay hyper-parameter on the fly based on the strength of updates from the classification loss (i.e., gradient of cross-entropy), and the regularization loss (i.e., -norm of the weights). We show that this simple modification can result in large improvements in adversarial robustness — an area which suffers from robust overfitting — without requiring extra data across various datasets and…Apple Machine Learning Research

FLEEK: Factual Error Detection and Correction with Evidence Retrieved from External Knowledge

Large language models’ inability to attribute their claims to external knowledge and their tendency to hallucinate makes it difficult to trust their responses. Even humans are prone to factual errors in their writing. Therefore verifying the factual accuracy of textual information, whether generated by large language models or curated by humans, is an important task. However, manually validating and correcting factual errors tends to be a tedious and labor-intensive process. In this paper, we propose FLEEK for automatic fact verification and correction. FLEEK automatically extracts factual…Apple Machine Learning Research

Federated Learning for Speech Recognition: Revisiting Current Trends Towards Large-Scale ASR

This paper was accepted at the Federated Learning in the Age of Foundation Models workshop at NeurIPS 2023.
While automatic speech recognition (ASR) has witnessed remarkable achievements in recent years, it has not garnered a widespread focus within the federated learning (FL) and differential privacy (DP) communities. Meanwhile, ASR is also a well suited benchmark for FL and DP as there is (i) a natural data split across users by using speaker information; (ii) heterogeneous data across speakers close to practical settings; (iii) interplay between acoustic and language modeling; (iv) and it…Apple Machine Learning Research

Swap Agnostic Learning, or Characterizing Omniprediction via Multicalibration

A recent line of work shows that notions of multigroup fairness imply surprisingly strong notions of omniprediction: loss minimization guarantees that apply not just for a specific loss function, but for any loss belonging to a large family of losses. While prior work has derived various notions of omniprediction from multigroup fairness guarantees of varying strength, it was unknown whether the connection goes in both directions. In this work, we answer this question in the affirmative, establishing equivalences between notions of multicalibration and omniprediction. The new definitions that…Apple Machine Learning Research

SAM-CLIP: Merging Vision Foundation Models towards Semantic and Spatial Understanding

This paper was accepted at the UniReps Workshop at NeurIPS 2023.
The landscape of publicly available vision foundation models (VFMs), such as CLIP and Segment Anything Model (SAM), is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their pre-training objectives. For instance, CLIP excels in semantic understanding, while SAM specializes in spatial understanding for segmentation. In this work, we introduce a simple recipe to efficiently merge VFMs into a unified model that absorbs their expertise. Our method integrates techniques of multi-task learning, continual…Apple Machine Learning Research

Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs

Recent work in Natural Language Processing and Computer Vision has been using textual information – e.g., entity names and descriptions – available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English…Apple Machine Learning Research