*= Equal Contributors
Recommendation systems in large-scale online marketplaces are essential to aiding users in discovering new content. However, state-of-the-art systems for item-to-item recommendation tasks are often based on a shallow level of contextual relevance, which can make the system insufficient for tasks where item relationships are more nuanced. Contextually relevant item pairs can sometimes have problematic relationships that are confusing or even controversial to end users, and they could degrade user experiences and brand perception when recommended to users. For example, the…Apple Machine Learning Research
Slower Respiration Rate is Associated with Higher Self-reported Well-being After Wellness Training
Mind–body interventions such as mindfulness-based stress reduction (MBSR) may improve well-being by increasing awareness and regulation of physiological and cognitive states. However, it is unclear how practice may alter long-term, baseline physiological processes, and whether these changes reflect improved well-being. Using respiration rate (RR), which can be sensitive to effects of meditation, and 3 aspects of self-reported well-being (psychological well-being [PWB], distress, and medical symptoms), we tested pre-registered hypotheses that: (1) Lower baseline RR (in a resting, non-meditative…Apple Machine Learning Research
Never-ending Learning of User Interfaces
Machine learning models have been trained to predict semantic information about user interfaces (UIs) to make apps more accessible, easier to test, and to automate. Currently, most models rely on datasets that are collected and labeled by human crowd-workers, a process that is costly and surprisingly error-prone for certain tasks. For example, it is possible to guess if a UI element is “tappable” from a screenshot (i.e., based on visual signifiers) or from potentially unreliable metadata (e.g., a view hierarchy), but one way to know for certain is to programmatically tap the UI element and…Apple Machine Learning Research
When Does Optimizing a Proper Loss Yield Calibration?
Optimizing proper loss functions is popularly believed to yield predictors with good calibration properties; the intuition being that for such losses, the global optimum is to predict the ground-truth probabilities, which is indeed calibrated. However, typical machine learning models are trained to approximately minimize loss over restricted families of predictors, that are unlikely to contain the ground truth. Under what circumstances does optimizing proper loss over a restricted family yield calibrated models? What precise calibration guarantees does it give? In this work, we provide a…Apple Machine Learning Research
Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images. Despite numerous task-specific methods, developing a comprehensive model remains challenging. In this paper, we present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects. Previous studies have used two-stage approaches that rely on pretrained NeRFs as real data to train diffusion models. In contrast, we propose a new single-stage training paradigm…Apple Machine Learning Research
FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization
The recent amalgamation of transformer and convolutional designs has led to steady improvements in accuracy and efficiency of the models. In this work, we introduce FastViT, a hybrid vision transformer architecture that obtains the state-of-the-art latency-accuracy trade-off. To this end, we introduce a novel token mixing operator, RepMixer, a building block of FastViT, that uses structural reparameterization to lower the memory access cost by removing skip-connections in the network. We further apply train-time overparametrization and large kernel convolutions to boost accuracy and…Apple Machine Learning Research
HyperDiffusion: Generating Implicit Neural Fields with Weight-Space Diffusion
Implicit neural fields, typically encoded by a multilayer perceptron (MLP) that maps from coordinates (e.g., xyz) to signals (e.g., signed distances), have shown remarkable promise as a high-fidelity and compact representation. However, the lack of a regular and explicit grid structure also makes it challenging to apply generative modeling directly on implicit neural fields in order to synthesize new data. To this end, we propose HyperDiffusion, a novel approach for unconditional generative modeling of implicit neural fields. HyperDiffusion operates directly on MLP weights and generates new…Apple Machine Learning Research
NeILF++: Inter-Reflectable Light Fields for Geometry and Material Estimation
We present a novel differentiable rendering framework for joint geometry, material, and lighting estimation from multi-view images. In contrast to previous methods which assume a simplified environment map or co-located flashlights, in this work, we formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF). The key insight of the proposed method is the union of the incident and outgoing light fields through physically-based rendering and inter-reflections between surfaces, making it possible to disentangle the scene…Apple Machine Learning Research
Reinforce Data, Multiply Impact: Improved Model Accuracy and Robustness with Dataset Reinforcement
We propose Dataset Reinforcement, a strategy to improve a dataset once such that the accuracy of any model architecture trained on the reinforced dataset is improved at no additional training cost for users. We propose a Dataset Reinforcement strategy based on data augmentation and knowledge distillation. Our generic strategy is designed based on extensive analysis across CNN- and transformer-based models and performing large-scale study of distillation with state-of-the-art models with various data augmentations. We create a reinforced version of the ImageNet training dataset, called…Apple Machine Learning Research