Collaborative Machine Learning Model Building with Families Using Co-ML

Existing novice-friendly machine learning (ML) modeling tools center around a solo user experience, where a single user collects only their own data to build a model. However, solo modeling experiences limit valuable opportunities for encountering alternative ideas and approaches that can arise when learners work together; consequently, it often precludes encountering critical issues in ML around data representation and diversity that can surface when different perspectives are manifested in a group-constructed data set. To address this issue, we created Co-ML – a tablet-based app for learners…Apple Machine Learning Research

Efficient Multimodal Neural Networks for Trigger-less Voice Assistants

The adoption of multimodal interactions by Voice Assistants (VAs) is growing rapidly to enhance human-computer interactions. Smartwatches have now incorporated trigger-less methods of invoking VAs, such as Raise To Speak (RTS), where the user raises their watch and speaks to VAs without an explicit trigger. Current state-of-the-art RTS systems rely on heuristics and engineered Finite State Machines to fuse gesture and audio data for multimodal decision-making. However, these methods have limitations, including limited adaptability, scalability, and induced human biases. In this work, we…Apple Machine Learning Research

Application-Agnostic Language Modeling for On-Device ASR

On-device automatic speech recognition systems face several challenges compared to server-based systems. They have to meet stricter constraints in terms of speed, disk size and memory while maintaining the same accuracy. Often they have to serve several applications with different distributions at once, such as communicating with a virtual assistant and speech-to-text. The simplest solution to serve multiple applications is to build application-specific (language) models, but this leads to an increase in memory. Therefore, we explore different data- and architecture-driven language modeling…Apple Machine Learning Research

Unconstrained Channel Pruning

Modern neural networks are growing not only in size and complexity but also in inference time. One of the most effective compression techniques — channel pruning — combats this trend by removing channels from convolutional weights to reduce resource consumption. However, removing channels is non-trivial for multi-branch segments of a model, which can introduce extra memory copies at inference time. These copies incur increase latency — so much so, that the pruned model is even slower than the original, unpruned model. As a workaround, existing pruning works constrain certain channels to be…Apple Machine Learning Research

Growing and Serving Large Open-domain Knowledge Graphs

*= Equal Contributors
Applications of large open-domain knowledge graphs (KGs) to real-world problems pose many unique challenges. In this paper, we present extensions to Saga our platform for continuous construction and serving of knowledge at scale. In particular, we describe a pipeline for training knowledge graph embeddings that powers key capabilities such as fact ranking, fact verification, a related entities service, and support for entity linking. We then describe how our platform, including graph embeddings, can be leveraged to create a Semantic Annotation service that links…Apple Machine Learning Research

Robustness in Multimodal Learning under Train-Test Modality Mismatch

Multimodal learning is defined as learning over multiple heterogeneous input modalities such as video, audio, and text. In this work, we are concerned with understanding how models behave as the type of modalities differ between training and deployment, a situation that naturally arises in many applications of multimodal learning to hardware platforms. We present a multimodal robustness framework to provide a systematic analysis of common multimodal representation learning methods. Further, we identify robustness short-comings of these approaches and propose two intervention techniques leading…Apple Machine Learning Research

Actionable Data Insights for Machine Learning

*= Equal Contributors
Artificial Intelligence (AI) and Machine Learning (ML) have made tremendous progress in the recent decade and have become ubiquitous in almost all application domains. Many recent advancements in the ease-of-use of ML frameworks and the low-code model training automations have further reduced the threshold for ML model building. As ML algorithms and pre-trained models become commodities, curating the appropriate training datasets and model evaluations remain critical challenges. However, these tasks are labor-intensive and require ML practitioners to have bespoke data…Apple Machine Learning Research

Learning Language-Specific Layers for Multilingual Machine Translation

Multilingual Machine Translation promises to improve translation quality between non-English languages. This is advantageous for several reasons, namely lower latency (no need to translate twice), and reduced error cascades (e.g. , avoiding losing gender and formality information when translating through English). On the downside, adding more languages reduces model capacity per language, which is usually countered by increasing the overall model size, making training harder and inference slower. In this work, we introduce Language-Specific Transformer Layers (LSLs), which allow us to increase…Apple Machine Learning Research