Apple Machine Learning Research
Application-Agnostic Language Modeling for On-Device ASR
On-device automatic speech recognition systems face several challenges compared to server-based systems. They have to meet stricter constraints in terms of speed, disk size and memory while maintaining the same accuracy. Often they have to serve several applications with different distributions at once, such as communicating with a virtual assistant and speech-to-text. The simplest solution to serve multiple applications is to build application-specific (language) models, but this leads to an increase in memory. Therefore, we explore different data- and architecture-driven language modeling…Apple Machine Learning Research
Unconstrained Channel Pruning
Modern neural networks are growing not only in size and complexity but also in inference time. One of the most effective compression techniques — channel pruning — combats this trend by removing channels from convolutional weights to reduce resource consumption. However, removing channels is non-trivial for multi-branch segments of a model, which can introduce extra memory copies at inference time. These copies incur increase latency — so much so, that the pruned model is even slower than the original, unpruned model. As a workaround, existing pruning works constrain certain channels to be…Apple Machine Learning Research
Growing and Serving Large Open-domain Knowledge Graphs
*= Equal Contributors
Applications of large open-domain knowledge graphs (KGs) to real-world problems pose many unique challenges. In this paper, we present extensions to Saga our platform for continuous construction and serving of knowledge at scale. In particular, we describe a pipeline for training knowledge graph embeddings that powers key capabilities such as fact ranking, fact verification, a related entities service, and support for entity linking. We then describe how our platform, including graph embeddings, can be leveraged to create a Semantic Annotation service that links…Apple Machine Learning Research
Robustness in Multimodal Learning under Train-Test Modality Mismatch
Multimodal learning is defined as learning over multiple heterogeneous input modalities such as video, audio, and text. In this work, we are concerned with understanding how models behave as the type of modalities differ between training and deployment, a situation that naturally arises in many applications of multimodal learning to hardware platforms. We present a multimodal robustness framework to provide a systematic analysis of common multimodal representation learning methods. Further, we identify robustness short-comings of these approaches and propose two intervention techniques leading…Apple Machine Learning Research
International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2023
Apple Machine Learning Research
Actionable Data Insights for Machine Learning
*= Equal Contributors
Artificial Intelligence (AI) and Machine Learning (ML) have made tremendous progress in the recent decade and have become ubiquitous in almost all application domains. Many recent advancements in the ease-of-use of ML frameworks and the low-code model training automations have further reduced the threshold for ML model building. As ML algorithms and pre-trained models become commodities, curating the appropriate training datasets and model evaluations remain critical challenges. However, these tasks are labor-intensive and require ML practitioners to have bespoke data…Apple Machine Learning Research
Learning Language-Specific Layers for Multilingual Machine Translation
Multilingual Machine Translation promises to improve translation quality between non-English languages. This is advantageous for several reasons, namely lower latency (no need to translate twice), and reduced error cascades (e.g. , avoiding losing gender and formality information when translating through English). On the downside, adding more languages reduces model capacity per language, which is usually countered by increasing the overall model size, making training harder and inference slower. In this work, we introduce Language-Specific Transformer Layers (LSLs), which allow us to increase…Apple Machine Learning Research
PointConvFormer: Revenge of the Point-based Convolution
We introduce PointConvFormer, a novel building block for point cloud based deep network architectures. Inspired by generalization theory, PointConvFormer combines ideas from point convolution, where filter weights are only based on relative position, and Transformers which utilize feature-based attention. In PointConvFormer, attention computed from feature difference between points in the neighborhood is used to modify the convolutional weights at each point. Hence, we preserved the invariances from point convolution, whereas attention helps to select relevant points in the neighborhood for…Apple Machine Learning Research
NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from 3D-aware Diffusion
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes while simultaneously maintaining semantic and physical consistency with the input. Existing approaches condition neural radiance fields (NeRF) on local image features, projecting points to the input image plane, and aggregating 2D features to perform volume rendering. However, under severe occlusion, this projection fails to resolve uncertainty, resulting in blurry renderings that lack details. In this work, we propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware…Apple Machine Learning Research