Collaborative Machine Learning Model Building with Families Using Co-ML

Existing novice-friendly machine learning (ML) modeling tools center around a solo user experience, where a single user collects only their own data to build a model. However, solo modeling experiences limit valuable opportunities for encountering alternative ideas and approaches that can arise when learners work together; consequently, it often precludes encountering critical issues in ML around data representation and diversity that can surface when different perspectives are manifested in a group-constructed data set. To address this issue, we created Co-ML – a tablet-based app for learners…Apple Machine Learning Research

f-DM: A Multi-stage Diffusion Model via Progressive Signal Transformation

Diffusion models (DMs) have recently emerged as SoTA tools for generative modeling in various domains. Standard DMs can be viewed as an instantiation of hierarchical variational autoencoders (VAEs) where the latent variables are inferred from input-centered Gaussian distributions with fixed scales and variances. Unlike VAEs, this formulation constrains DMs from changing the latent spaces and learning abstract representations. In this work, we propose f-DM, a generalized family of DMs which allows progressive signal transformation. More precisely, we extend DMs to incorporate a set of…Apple Machine Learning Research

Angler: Helping Machine Translation Practitioners Prioritize Model Improvements

*=Authors contributed equally
Machine learning (ML) models can fail in unexpected ways in the real world, but not all model failures are equal. With finite time and resources, ML practitioners are forced to prioritize their model debugging and improvement efforts. Through interviews with 13 ML practitioners at Apple, we found that practitioners construct small targeted test sets to estimate an error’s nature, scope, and impact on users. We built on this insight in a case study with machine translation models, and developed Angler, an interactive visual analytics tool to help practitioners…Apple Machine Learning Research

High-Throughput Vector Similarity Search in Knowledge Graphs

There is an increasing adoption of machine learning for encoding data into vectors to serve online recommendation and search use cases. As a result, recent data management systems propose augmenting query processing with online vector similarity search. In this work, we explore vector similarity search in the context of Knowledge Graphs (KGs). Motivated by the tasks of finding related KG queries and entities for past KG query workloads, we focus on hybrid vector similarity search (hybrid queries for short) where part of the query corresponds to vector similarity search and part of the query…Apple Machine Learning Research

Text is All You Need: Personalizing ASR Models using Controllable Speech Synthesis

Adapting generic speech recognition models to specific individuals is a challenging problem due to the scarcity of personalized data. Recent works have proposed boosting the amount of training data using personalized text-to-speech synthesis. Here, we ask two fundamental questions about this strategy: when is synthetic data effective for personalization, and why is it effective in those cases? To address the first question, we adapt a state-of-the-art automatic speech recognition (ASR) model to target speakers from four benchmark datasets representative of different speaker types. We show that…Apple Machine Learning Research

FaceLit: Neural 3D Relightable Faces

We propose a generative framework, FaceLit, capable of generating a 3D face that can be rendered at various user-defined lighting conditions and views, learned purely from 2D images in-the-wild without any manual annotation. Unlike existing works that require careful capture setup or human labor, we rely on off-the-shelf pose and illumination estimators. With these estimates, we incorporate the Phong reflectance model in the neural volume rendering framework. Our model learns to generate shape and material properties of a face such that, when rendered according to the natural statistics of…Apple Machine Learning Research

Naturalistic Head Motion Generation From Speech

Synthesizing natural head motion to accompany speech for an embodied conversational agent is necessary for providing a rich interactive experience. Most prior works assess the quality of generated head motion by comparing them against a single ground-truth using an objective metric. Yet there are many plausible head motion sequences to accompany a speech utterance. In this work, we study the variation in the perceptual quality of head motions sampled from a generative model. We show that, despite providing more diverse head motions, the generative model produces motions with varying degrees of…Apple Machine Learning Research

On the Role of Lip Articulation in Visual Speech Perception

*= Equal Contribution
Generating realistic lip motion from audio to simulate speech production is critical for driving natural character animation. Previous research has shown that traditional metrics used to optimize and assess models for generating lip motion from speech are not a good indicator of subjective opinion of animation quality. Devising metrics that align with subjective opinion first requires understanding what impacts human perception of quality. In this work, we focus on the degree of articulation and run a series of experiments to study how articulation strength impacts human…Apple Machine Learning Research