The growing demand for personalized and private on-device applications highlights the importance of source-free unsupervised domain adaptation (SFDA) methods, especially for time-series data, where individual differences produce large domain shifts. As sensor-embedded mobile devices become ubiquitous, optimizing SFDA methods for parameter utilization and data-sample efficiency in time-series contexts becomes crucial. Personalization in time series is necessary to accommodate the unique patterns and behaviors of individual users, enhancing the relevance and accuracy of the predictions. In this…Apple Machine Learning Research
4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities
*Equal Contributors
Current multimodal and multitask foundation models like 4M or UnifiedIO show promising results, but in practice their out-of-the-box abilities to accept diverse inputs and perform diverse tasks are limited by the (usually rather small) number of modalities and tasks they are trained on. In this paper, we significantly expand upon the capabilities of 4M by training it on tens of highly diverse modalities and by performing co-training on large-scale multimodal datasets and text corpora. This includes training on several semantic and geometric modalities, feature maps from…Apple Machine Learning Research
Scalable Private Search with Wally
This paper presents Wally, a private search system that supports efficient semantic and keyword search queries against
large databases. When sufficiently many clients are making
queries, Wally’s performance is significantly better than previous systems. In previous private search systems, for each
client query, the server must perform at least one expensive
cryptographic operation per database entry. As a result, performance degraded proportionally with the number of entries
in the database.
In Wally, we remove this limitation. Specifically, for each
query the server performs cryptographic…Apple Machine Learning Research
CAMPHOR: Collaborative Agents for Multi-Input Planning and High-Order Reasoning On Device
While server-side Large Language Models (LLMs) demonstrate proficiency in tool integration and complex reasoning, deploying Small Language Models (SLMs) directly on devices brings opportunities to improve latency and privacy but also introduces unique challenges for accuracy and memory. We introduce CAMPHOR, an innovative on-device SLM multi-agent framework designed to handle multiple user inputs and reason over personal context locally, ensuring privacy is maintained. CAMPHOR employs a hierarchical architecture where a high-order reasoning agent decomposes complex tasks and coordinates expert…Apple Machine Learning Research
Generalizable Autoregressive Modeling of Time Series Through Functional Narratives
Time series data are inherently functions of time, yet current transformers often learn time series by modeling them as mere concatenations of time periods, overlooking their functional properties. In this work, we propose a novel objective for transformers that learn time series by re-interpreting them as temporal functions. We build an alternative sequence of time series by constructing degradation operators of different intensity in the functional space, creating augmented variants of the original sample that are abstracted or simplified to different degrees. Based on the new set of…Apple Machine Learning Research
Progressive Entropic Optimal Transport Solvers
Optimal transport (OT) has profoundly impacted machine learning by providing theoretical and computational tools to realign datasets. In this context, given two large point clouds of sizes nnn and mmm in Rdmathbb{R}^dRd, entropic OT (EOT) solvers have emerged as the most reliable tool to either solve the Kantorovich problem and output a n×mntimes mn×m coupling matrix, or to solve the Monge problem and learn a vector-valued push-forward map. While the robustness of EOT couplings/maps makes them a go-to choice in practical applications, EOT solvers remain difficult to tune because of a small…Apple Machine Learning Research
Vision-Based Hand Gesture Customization from a Single Demonstration
Hand gesture recognition is becoming a more prevalent mode of human-computer interaction, especially as cameras proliferate across everyday devices. Despite continued progress in this field, gesture customization is often underexplored. Customization is crucial since it enables users to define and demonstrate gestures that are more natural, memorable, and accessible. However, customization requires efficient usage of user-provided data. We introduce a method that enables users to easily design bespoke gestures with a monocular camera from one demonstration. We employ transformers and…Apple Machine Learning Research
GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
Recent advancements in Large Language Models (LLMs) have sparked interest in their formal reasoning capabilities, particularly in mathematics. The GSM8K benchmark is widely used to assess the mathematical reasoning of models on grade-school-level questions. While the performance of LLMs on GSM8K has significantly improved in recent years, it remains unclear whether their mathematical reasoning capabilities have genuinely advanced, raising questions about the reliability of the reported metrics. To address these concerns, we conduct a large-scale study on several SOTA open and closed models. To…Apple Machine Learning Research
On the Limited Generalization Capability of the Implicit Reward Model Induced by Direct Preference Optimization
Reinforcement Learning from Human Feedback (RLHF) is an effective approach for aligning language models to human preferences. Central to RLHF is learning a reward function for scoring human preferences. Two main approaches for learning a reward model are 1) training an explicit reward model as in RLHF, and 2) using an implicit reward learned from preference data through methods such as Direct Preference Optimization (DPO). Prior work has shown that the implicit reward model of DPO can approximate a trained reward model, but it is unclear to what extent DPO can generalize to distribution…Apple Machine Learning Research
When is Multicalibration Post-Processing Necessary?
Calibration is a well-studied property of predictors which guarantees meaningful uncertainty estimates. Multicalibration is a related notion — originating in algorithmic fairness — which requires predictors to be simultaneously calibrated over a potentially complex and overlapping collection of protected subpopulations (such as groups defined by ethnicity, race, or income). We conduct the first comprehensive study evaluating the usefulness of multicalibration post-processing across a broad set of tabular, image, and language datasets for models spanning from simple decision trees to 90…Apple Machine Learning Research