Towards Multimodal Multitask Scene Understanding Models for Indoor Mobile Agents

The perception system in personalized mobile agents requires developing indoor scene understanding models, which can understand 3D geometries, capture objectiveness, analyze human behaviors, etc. Nonetheless, this direction has not been well-explored in comparison with models for outdoor environments (e.g., the autonomous driving system that includes pedestrian prediction, car detection, traffic sign recognition, etc.). In this paper, we first discuss the main challenge: insufficient, or even no, labeled data for real-world indoor environments, and other challenges such as fusion between…Apple Machine Learning Research

Safe Real-World Reinforcement Learning for Mobile Agent Obstacle Avoidance

Collision avoidance is key for mobile robots and agents to operate safely in the real world. In this work, we present an efficient and effective collision avoidance system that combines real-world reinforcement learning (RL), search-based online trajectory planning, and automatic emergency intervention, e.g. automatic emergency braking (AEB). The goal of the RL is to learn effective search heuristics that speed up the search for collision-free trajectory and reduce the frequency of triggering automatic emergency interventions. This novel setup enables RL to learn safely and directly on mobile…Apple Machine Learning Research

Low-Rank Optimal Transport: Approximation, Statistics and Debiasing

The matching principles behind optimal transport (OT) play an increasingly important role in machine learning, a trend which can be observed when OT is used to disambiguate datasets in applications (e.g. single-cell genomics) or used to improve more complex methods (e.g. balanced attention in transformers or self-supervised learning). To scale to more challenging problems, there is a growing consensus that OT requires solvers that can operate on millions, not thousands, of points. The low-rank optimal transport (LOT) approach advocated in (Scetbon et al., 2021) holds several promises in that…Apple Machine Learning Research

MBW: Multi-view Bootstrapping in the Wild

Labeling articulated objects in unconstrained settings has a wide variety of applications including entertainment, neuroscience, psychology, ethology, and many fields of medicine. Large offline labeled datasets do not exist for all but the most common articulated object categories (e.g., humans). Hand labeling these landmarks within a video sequence is a laborious task. Learned landmark detectors can help, but can be error-prone when trained from only a few examples. Multi-camera systems that train fine-grained detectors have shown significant promise in detecting such errors, allowing for…Apple Machine Learning Research

Statistical Deconvolution for Inference of Infection Time Series

Accurate measurement of daily infection incidence is crucial to epidemic response. However, delays in symptom onset, testing, and reporting obscure the dynamics of transmission, necessitating methods to remove the effects of stochastic delays from observed data. Existing estimators can be sensitive to model misspecification and censored observations; many analysts have instead used methods that exhibit strong bias. We develop an estimator with a regularization scheme to cope with stochastic delays, which we term the robust incidence deconvolution estimator. We compare the method to existing…Apple Machine Learning Research

Learning Bias-reduced Word Embeddings Using Dictionary Definitions

Pre-trained word embeddings, such as GloVe, have shown undesirable gender, racial, and religious biases. To address this problem, we propose DD-GloVe, a train-time debiasing algorithm to learn word embeddings by leveraging dictionary definitions. We introduce dictionary-guided loss functions that encourage word embeddings to be similar to their relatively neutral dictionary definition representations. Existing debiasing algorithms typically need a pre-compiled list of seed words to represent the bias direction, along which biased information gets removed. Producing this list involves…Apple Machine Learning Research

Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss

A central issue in machine learning is how to train models on sensitive user data. Industry has widely adopted a simple algorithm: Stochastic Gradient Descent with noise (a.k.a. Stochastic Gradient Langevin Dynamics). However, foundational theoretical questions about this algorithm’s privacy loss remain open — even in the seemingly simple setting of smooth convex losses over a bounded domain. Our main result resolves these questions: for a large range of parameters, we characterize the differential privacy up to a constant factor. This result reveals that all previous analyses for this…Apple Machine Learning Research

FLAIR: Federated Learning Annotated Image Repository

Cross-device federated learning is an emerging machine learning (ML) paradigm where a large population of devices collectively train an ML model while the data remains on the devices. This research field has a unique set of practical challenges, and to systematically make advances, new datasets curated to be compatible with this paradigm are needed. Existing federated learning benchmarks in the image domain do not accurately capture the scale and heterogeneity of many real-world use cases. We introduce FLAIR, a challenging large-scale annotated image dataset for multi-label classification…Apple Machine Learning Research

Mean Estimation with User-level Privacy under Data Heterogeneity

A key challenge in many modern data analysis tasks is that user data is heterogeneous. Different users may possess vastly different numbers of data points. More importantly, it cannot be assumed that all users sample from the same underlying distribution. This is true, for example in language data, where different speech styles result in data heterogeneity. In this work we propose a simple model of heterogeneous user data that differs in both distribution and quantity of data, and we provide a method for estimating the population-level mean while preserving user-level differential privacy. We…Apple Machine Learning Research

Two-Layer Bandit Optimization for Recommendations

Online commercial app marketplaces serve millions of apps to billions of users in an efficient manner. Bandit optimization algorithms are used to ensure that the recommendations are relevant, and converge to the best performing content over time. However, directly applying bandits to real-world systems, where the catalog of items is dynamic and continuously refreshed, is not straightforward. One of the challenges we face is the existence of several competing content surfacing components, a phenomenon not unusual in large-scale recommender systems. This often leads to challenging scenarios…Apple Machine Learning Research