*= Equal Contributors
In many retrieval systems the original high dimensional data (e.g., images) is mapped to a lower dimensional feature through a learned embedding model. The task of retrieving the most similar data from a gallery set to a given query data is performed through similarity comparison on features. When the embedding model is updated, it might produce features that are not comparable/compatible with features already in the gallery computed with the old model. Subsequently, all features in the gallery need to be re-computed using the new embedding model — a computationally…Apple Machine Learning Research
Loss minimization through the lens of outcome indistinguishability
We present a new perspective on loss minimization and the recent notion of Omniprediction through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class, omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability. For a set of statistical tests–based on a collection of losses and hypothesis class–a predictor is Loss…Apple Machine Learning Research
A Unifying Theory of Distance from Calibration
We study the fundamental question of how to define and measure the distance from calibration for probabilistic predictors. While the notion of perfect calibration is well-understood, there is no consensus on how to quantify the distance from perfect calibration. Numerous calibration measures have been proposed in the literature, but it is unclear how they compare to each other, and many popular measures such as Expected Calibration Error (ECE) fail to satisfy basic properties like continuity.
We present a rigorous framework for analyzing calibration measures, inspired by the literature on…Apple Machine Learning Research
Improving Human Annotation Effectiveness for Fact Collection by Identifying the Most Relevant Answers
This paper was accepted at the Workshops on Data Science with Human in the Loop at EMNLP 2022
Identifying and integrating missing facts is a crucial task for knowledge graph completion to ensure robustness towards downstream applications such as question answering. Adding new facts to a knowledge graph in real world system often involves human verification effort, where candidate facts are verified for accuracy by human annotators. This process is labor-intensive, time-consuming, and inefficient since only a small number of missing facts can be identified. This paper proposes a simple but…Apple Machine Learning Research
Designing Data: Proactive Data Collection and Iteration for Machine Learning
Lack of diversity in data collection has caused significant failures in machine learning (ML) applications. While ML developers perform post-collection interventions, these are time intensive and rarely comprehensive. Thus, new methods to track and manage data collection, iteration, and model training are necessary for evaluating whether datasets reflect real world variability. We present designing data, an iterative, bias mitigating approach to data collection connecting HCI concepts with ML techniques. Our process includes (1) Pre-Collection Planning, to reflexively prompt and document…Apple Machine Learning Research
Symbol Guided Hindsight Priors for Reward Learning from Human Preferences
This paper was accepted at the “Human in the Loop Learning Workshop” at NeurIPS 2022.
Specification of reward functions for Reinforcement Learning is a challenging task which is bypassed by the framework of Preference Based Learning methods which instead learn from preference labels on trajectory queries. These methods, however, still suffer from high requirements of preference labels and often would still achieve low reward recovery. We present the PRIOR framework that alleviates the issues of impractical number of queries to humans as well as poor reward recovery through computing priors…Apple Machine Learning Research
RangeAugment: Efficient Online Augmentation with Range Learning
State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal policies. To answer the open question on the importance of magnitude ranges for each augmentation operation, we introduce RangeAugment that allows us…Apple Machine Learning Research
Supervised Training of Conditional Monge Maps
Optimal transport (OT) theory describes general principles to define and select, among many possible choices, the most efficient way to map a probability measure onto another. That theory has been mostly used to estimate, given a pair of source and target probability measures , a parameterized map that can efficiently map onto . In many applications, such as predicting cell responses to treatments, the data measures (features of untreated/treated cells) that define optimal transport problems do not arise in isolation but are associated with a context (the treatment). To account for and…Apple Machine Learning Research
Modeling Heart Rate Response to Exercise with Wearable Data
This paper was accepted at the workshop “Learning from Time Series for Health” at NeurIPS 2022.
Heart rate (HR) dynamics in response to workout intensity and duration measure key aspects of an individual’s fitness and cardiorespiratory health. Models of exercise physiology have been used to characterize cardiorespiratory fitness in well-controlled laboratory settings, but face additional challenges when applied to wearables in noisy, real-world settings. Here, we introduce a hybrid machine learning model that combines a physiological model of HR and demand during exercise with neural network…Apple Machine Learning Research
Impact of Language Characteristics on Multi-Lingual Text-to-Text Transfer
In this work, we analyze a pre-trained mT5 to discover the attributes of cross-lingual connections learned by this model. Through a statistical interpretation framework over 90 language pairs across three tasks, we show that transfer performance can be modeled by a few linguistic and data-derived features. These observations enable us to interpret cross-lingual understanding of the mT5 model. Through these observations, one can favorably choose the best source language for a task, and can anticipate its training data demands. A key finding of this work is that similarity of syntax, morphology…Apple Machine Learning Research