Mel Spectrogram Inversion with Stable Pitch

Vocoders are models capable of transforming a low-dimensional spectral representation of an audio signal, typically the mel spectrogram, to a waveform. Modern speech generation pipelines use a vocoder as their final component. Recent vocoder models developed for speech achieve a high degree of realism, such that it is natural to wonder how they would perform on music signals.
Compared to speech, the heterogeneity and structure of the musical sound texture offers new challenges. In this work we focus on one specific artifact that some vocoder models designed for speech tend to exhibit when…Apple Machine Learning Research

Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting

The practical success of overparameterized neural networks has motivated the recent scientific study of interpolating methods, which perfectly fit their training data. Certain interpolating methods, including neural networks, can fit noisy training data without catastrophically bad test performance, in defiance of standard intuitions from statistical learning theory. Aiming to explain this, a body of recent work has studied benign overfitting, a phenomenon where some interpolating methods approach Bayes optimality, even in the presence of noise. In this work we argue that while benign…Apple Machine Learning Research

Device-Directed Speech Detection: Regularization via Distillation for Weakly-Supervised Models

We address the problem of detecting speech directed to a device that does not contain a specific wake-word that is traditionally used to invoke virtual assistants (VAs). Specifically, we focus on audio that come from a touch-based invocation. Mitigating VA activation due to accidental button presses is critical for the user experience. While the majority of approaches to false trigger mitigation (FTM) are designed to detect the presence of a target keyword, inferring user intent when a keyword is not present is difficult. This also poses a challenge when creating the training/evaluation data…Apple Machine Learning Research

Space-Efficient Representation of Entity-centric Query Language Models

Virtual assistants make use of automatic speech recognition (ASR) to help users answer entity-centric queries. However, spoken entity recognition is a difficult problem, due to the large number of frequently-changing named entities. In addition, resources available for recognition are constrained when ASR is performed on-device. In this work, we investigate the use of probabilistic grammars as language models within the finite-state transducer (FST) framework. We introduce a deterministic approximation to probabilistic grammars that avoids the explicit expansion of non-terminals at model…Apple Machine Learning Research

GAUDI: A Neural Architect for Immersive 3D Scene Generation

We introduce GAUDI, a generative model capable of capturing the distribution of complex and realistic 3D scenes that can be rendered immersively from a moving camera. We tackle this challenging problem with a scalable yet powerful approach, where we first optimize a latent representation that disentangles radiance fields and camera poses. This latent representation is then used to learn a generative model that enables both unconditional and conditional generation of 3D scenes. Our model generalizes previous works that focus on single objects by removing the assumption that the camera pose…Apple Machine Learning Research

Integrating Categorical Features in End-To-End ASR

All-neural, end-to-end ASR systems gained rapid interest from the speech recognition community. Such systems convert speech input to text units using a single trainable neural network model. E2E models require large amounts of paired speech text data that is expensive to obtain. The amount of data available varies across different languages and dialects. It is critical to make use of all these data so that both low resource languages and high resource languages can be improved. When we want to deploy an ASR system for a new application domain, the amount of domain specific training data is…Apple Machine Learning Research

Reachability Embeddings: Self-Supervised Representation Learning from Spatiotemporal Motion Trajectories for Multimodal Geospatial Computer Vision

Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this paper, we propose a self-supervised method for learning representations of geographic locations from unlabeled GPS trajectories to solve downstream geospatial computer vision tasks. Tiles resulting from a raster representation of the earth’s surface are modeled as nodes on a graph or pixels of an image. GPS trajectories are modeled as allowed Markovian…Apple Machine Learning Research

NeuMan: Neural Human Radiance Field from a Single Video

Photorealistic rendering and reposing of humans is important for enabling augmented reality experiences. We propose a novel framework to reconstruct the human and the scene that can be rendered with novel human poses and views from just a single in-the-wild video. Given a video captured by a moving camera, we train two NeRF models: a human NeRF model and a scene NeRF model. To train these models, we rely on existing methods to estimate the rough geometry of the human and the scene. Those rough geometry estimates allow us to create a warping field from the observation space to the canonical…Apple Machine Learning Research

ARtonomous: Introducing Middle School Students to Reinforcement Learning Through Virtual Robotics

Typical educational robotics approaches rely on imperative programming for robot navigation. However, with the increasing presence of AI in everyday life, these approaches miss an opportunity to introduce machine learning (ML) techniques grounded in an authentic and engaging learning context. Furthermore, the needs for costly specialized equipment and ample physical space are barriers that limit access to robotics experiences for all learners. We propose ARtonomous, a relatively low-cost, virtual alternative to physical, programming-only robotics kits. With ARtonomous, students employ…Apple Machine Learning Research