Optimal Algorithms for Mean Estimation under Local Differential Privacy

We study the problem of mean estimation of -bounded vectors under the constraint of local differential privacy. While the literature has a variety of algorithms that achieve the asymptotically optimal rates for this problem, the performance of these algorithms in practice can vary significantly due to varying (and often large) hidden constants. In this work, we investigate the question of designing the protocol with the smallest variance. We show that PrivUnit (Bhowmick et al. 2018) with optimized parameters achieves the optimal variance among a large family of locally private randomizers. To…Apple Machine Learning Research

Private Frequency Estimation via Projective Geometry

In this work, we propose a new algorithm ProjectiveGeometryResponse (PGR) for locally differentially private (LDP) frequency estimation. For a universe size of and with users, our -LDP algorithm has communication cost bits in the private coin setting and in the public coin setting, and has computation cost for the server to approximately reconstruct the frequency histogram, while achieving the state-of-the-art privacy-utility tradeoff. In many parameter settings used in practice this is a significant improvement over the $ O(n+k^2)$ computation cost that is achieved by the recent…Apple Machine Learning Research

Position Prediction as an Effective Pre-training Strategy

Transformers have gained increasing popularity in a wide range of applications, including Natural Language Processing (NLP), Computer Vision and Speech Recognition, because of their powerful representational capacity. However, harnessing this representational capacity effectively requires a large amount of data, strong regularization, or both, to mitigate overfitting. Recently, the power of the Transformer has been unlocked by self-supervised pretraining strategies based on masked autoencoderswhich rely on reconstructing masked inputs, directly, or contrastively from unmasked content. This…Apple Machine Learning Research

Self-Conditioning Pre-Trained Language Models

In this paper we aim to investigate the mechanisms that guide text generation with pre-trained Transformer-based Language Models (TLMs). Grounded on the Product of Experts formulation by Hinton (1999), we describe a generative mechanism that exploits expert units which naturally exist in TLMs. Such units are responsible for detecting concepts in the input and conditioning text generation on such concepts. We describe how to identify expert units and how to activate them during inference in order to induce any desired concept in the generated output. We find that the activation of a…Apple Machine Learning Research

Speech Emotion: Investigating Model Representations, Multi-Task Learning and Knowledge Distillation

Estimating dimensional emotions, such as activation, valence and dominance, from acoustic speech signals has been widely explored over the past few years. While accurate estimation of activation and dominance from speech seem to be possible, the same for valence remains challenging. Previous research has shown that the use of lexical information can improve valence estimation performance.
Lexical information can be obtained from pre-trained acoustic models, where the learned representations can improve valence estimation from speech. We investigate the use of pre-trained model representations…Apple Machine Learning Research

Leveraging Entity Representations, Dense-Sparse Hybrids, and Fusion-in-Decoder for Cross-Lingual Question Answering

We describe our two-stage system for the Multilingual Information Access (MIA) 2022 Shared Task on Cross-Lingual Open-Retrieval Question Answering. The first stage consists of multilingual passage retrieval with a hybrid dense and sparse retrieval strategy. The second stage consists of a reader which outputs the answer from the top passages returned by the first stage. We show the efficacy of using entity representations, sparse retrieval signals to help dense retrieval, and Fusion-in-Decoder. On the development set, we obtain 43.46 F1 on XOR-TyDi QA and 21.99 F1 on MKQA, for an average F1…Apple Machine Learning Research

Efficient Representation Learning via Adaptive Context Pooling

Self-attention mechanisms model long-range context by using pairwise attention between all input tokens. In doing so, they assume a fixed attention granularity defined by the individual tokens (e.g., text characters or image pixels), which may not be optimal for modeling complex dependencies at higher levels. In this paper, we propose ContextPool to address this problem by adapting the attention granularity for each token. Inspired by the success of ConvNets that are combined with pooling to capture long-range dependencies, we learn to pool neighboring features for each token before computing…Apple Machine Learning Research

Style Equalization: Unsupervised Learning of Controllable Generative Sequence Models

Controllable generative sequence models with the capability to extract and replicate the style of specific examples enable many applications, including narrating audiobooks in different voices, auto-completing and auto-correcting written handwriting, and generating missing training samples for downstream recognition tasks. However, under an unsupervised-style setting, typical training algorithms for controllable sequence generative models suffer from the training-inference mismatch, where the same sample is used as content and style input during training but unpaired samples are given during…Apple Machine Learning Research

Dynamic Memory for Interpretable Sequential Optimisation

Real-world applications of reinforcement learning for recommendation and experimentation faces a practical challenge: the relative reward of different bandit arms can evolve over the lifetime of the learning agent. To deal with these non-stationary cases, the agent must forget some historical knowledge, as it may no longer be relevant to minimise regret. We present a solution to handling non-stationarity that is suitable for deployment at scale, to provide business operators with automated adaptive optimisation. Our solution aims to provide interpretable learning that can be trusted by humans…Apple Machine Learning Research