Controllable generative sequence models with the capability to extract and replicate the style of specific examples enable many applications, including narrating audiobooks in different voices, auto-completing and auto-correcting written handwriting, and generating missing training samples for downstream recognition tasks. However, under an unsupervised-style setting, typical training algorithms for controllable sequence generative models suffer from the training-inference mismatch, where the same sample is used as content and style input during training but unpaired samples are given during…Apple Machine Learning Research
Dynamic Memory for Interpretable Sequential Optimisation
Real-world applications of reinforcement learning for recommendation and experimentation faces a practical challenge: the relative reward of different bandit arms can evolve over the lifetime of the learning agent. To deal with these non-stationary cases, the agent must forget some historical knowledge, as it may no longer be relevant to minimise regret. We present a solution to handling non-stationarity that is suitable for deployment at scale, to provide business operators with automated adaptive optimisation. Our solution aims to provide interpretable learning that can be trusted by humans…Apple Machine Learning Research
The Slingshot Mechanism: An Empirical Study of Adaptive Optimizers and the Grokking Phenomenon
The grokking phenomenon as reported by Power et al., refers to a regime where a long period of overfitting is followed by a seemingly sudden transition to perfect generalization. In this paper, we attempt to reveal the underpinnings of Grokking via a series of empirical studies. Specifically, we uncover an optimization anomaly plaguing adaptive optimizers at extremely late stages of training, referred to as the Slingshot Mechanism. A prominent artifact of the Slingshot Mechanism can be measured by the cyclic phase transitions between stable and unstable training regimes, and can be easily…Apple Machine Learning Research
Critical Regularizations for Neural Surface Reconstruction in the Wild
Neural implicit functions have recently shown promising results on surface reconstructions from multiple views. However, current methods still suffer from excessive time complexity and poor robustness when reconstructing unbounded or complex scenes. In this paper, we present RegSDF, which shows that proper point cloud supervisions and geometry regularizations are sufficient to produce high-quality and robust reconstruction results. Specifically, RegSDF takes an additional oriented point cloud as input, and optimizes a signed distance field and a surface light field within a differentiable…Apple Machine Learning Research
Neural Face Video Compression using Multiple Views
Recent advances in deep generative models led to the development of neural face video compression codecs that use an order of magnitude less bandwidth than engineered codecs. These neural codecs reconstruct the current frame by warping a source frame and using a generative model to compensate for imperfections in the warped source frame. Thereby, the warp is encoded and transmitted using a small number of keypoints rather than a dense flow field, which leads to massive savings compared to traditional codecs. However, by relying on a single source frame only, these methods lead to inaccurate…Apple Machine Learning Research
Efficient Multi-view Stereo via Attention-Driven 2D Convolutions
Deep learning has made significant impacts on multi-view stereo systems. State-of-the-art approaches typically involve building a cost volume, followed by multiple 3D convolution operations to recover the input image’s pixel-wise depth. While such end-to-end learning of plane-sweeping stereo advances public benchmarks’ accuracy, they are typically very slow to compute. We present MVS2D, a highly efficient multi-view stereo algorithm that seamlessly integrates multi-view constraints into single-view networks via an attention mechanism. Since MVS2D only builds on 2D convolutions, it is at least…Apple Machine Learning Research
Robust Joint Shape and Pose Optimization for Few-view Object Reconstruction
Reconstructing an accurate 3D object model from a few image observations remains a challenging problem in computer vision. State-of-the-art approaches typically assume accurate camera poses as input, which could be difficult to obtain in realistic settings. In this paper, we present FvOR, a learning-based object reconstruction method that predicts accurate 3D models given a few images with noisy input poses. The core of our approach is a fast and robust multi-view reconstruction algorithm to jointly refine 3D geometry and camera pose estimation using learnable neural network modules. We…Apple Machine Learning Research
Forward Compatible Training for Large-Scale Embedding Retrieval Systems
In visual retrieval systems, updating the embedding model requires recomputing features for every piece of data. This expensive process is referred to as backfilling. Recently, the idea of backward compatible training (BCT) was proposed. To avoid the cost of backfilling, BCT modifies training of the new model to make its representations compatible with those of the old model. However, BCT can significantly hinder the performance of the new model. In this work, we propose a new learning paradigm for representation learning: forward compatible training (FCT). In FCT, when the old model is…Apple Machine Learning Research