Neural Fisher Kernel: Low-rank Approximation and Knowledge Distillation

In this paper, we study the representation of neural networks from the view of kernels. We first define the Neural Fisher Kernel (NFK), which is the Fisher Kernel applied to neural networks. We show that NFK can be computed for both supervised and unsupervised learning models, which can serve as a unified tool for representation extraction. Furthermore, we show that practical NFKs exhibit low-rank structures. We then propose an efficient algorithm that computes a low rank approximation of NFK, which scales to large datasets and networks. We show that the low-rank approximation of NFKs derived…Apple Machine Learning Research

Synthetic Defect Generation for Display Front-of-Screen Quality Inspection: A Survey

Display front-of-screen (FOS) quality inspection is essential for the mass production of displays in the manufacturing process. However, the severe imbalanced data, especially the limited number of defective samples, has been a long-standing problem that hinders the successful application of deep learning algorithms. Synthetic defect data generation can help address this issue. This paper reviews the state-of-the-art synthetic data generation methods and the evaluation metrics that can potentially be applied to display FOS quality inspection tasks.Apple Machine Learning Research

Neo: Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels

The confusion matrix, a ubiquitous visualization for helping people evaluate machine learning models, is a tabular layout that compares predicted class labels against actual class labels over all data instances. We conduct formative research with machine learning practitioners at Apple and find that conventional confusion matrices do not support more complex data-structures found in modern-day applications, such as hierarchical and multi-output labels. To express such variations of confusion matrices, we design an algebra that models confusion matrices as probability distributions. Based on…Apple Machine Learning Research

Layer-Wise Data-Free CNN Compression

We present an efficient method for compressing a trained neural network without using any data. Our data-free method requires 14x-450x fewer FLOPs than comparable state-of-the-art methods. We break the problem of data-free network compression into a number of independent layer-wise compressions. We show how to efficiently generate layer-wise training data, and how to precondition the network to maintain accuracy during layer-wise compression. We show state-of-the-art performance on MobileNetV1 for data-free low-bit-width quantization. We also show state-of-the-art performance on data-free…Apple Machine Learning Research