Scaling Smart: Accelerating Large Language Model Pre-training with Small Model Initialization

This paper was accepted at the Efficient Natural Language and Speech Processing (ENLSP) Workshop at NeurIPS 2024.
The pre-training phase of language models often begins with randomly initialized parameters. With the current trends in scaling models, training their large number of parameters can be extremely slow and costly. In contrast, small language models are less expensive to train, but they often cannot achieve the accuracy of large models. In this paper, we explore an intriguing idea to connect these two different regimes: Can we develop a method to initialize large language models using…Apple Machine Learning Research

Device-Directed Speech Detection for Follow-up Conversations Using Large Language Models

This paper was accepted at the Adaptive Foundation Models (AFM) workshop at NeurIPS Workshop 2024.
Follow-up conversations with virtual assistants (VAs) enable a user to seamlessly interact with a VA without the need to repeatedly invoke it using a keyword (after the first query). Therefore, accurate Device-Directed Speech Detection (DDSD) from the follow-up queries is critical for enabling naturalistic user experience. To this end, we explore the notion of Large Language Models (LLMs) and model the first query when making inference about the follow-ups (based on the ASR-decoded text), via…Apple Machine Learning Research

Optimizing Contextual Speech Recognition Using Vector Quantization for Efficient Retrieval

Neural contextual biasing allows speech recognition models to leverage contextually relevant information, leading to improved transcription accuracy. However, the biasing mechanism is typically based on a cross-attention module between the audio and a catalogue of biasing entries, which means computational complexity can pose severe practical limitations on the size of the biasing catalogue and consequently on accuracy improvements. This work proposes an approximation to cross-attention scoring based on vector quantization and enables compute- and memory-efficient use of large biasing…Apple Machine Learning Research

Aggregate-and-Adapt Natural Language Prompts for Downstream Generalization of CLIP

Large pretrained vision-language models like CLIP have shown promising generalization capability, but may struggle in specialized domains (e.g., satellite imagery) or fine-grained classification (e.g., car models) where the visual concepts are unseen or under-represented during pretraining. Prompt learning offers a parameter-efficient finetuning framework that can adapt CLIP to downstream tasks even when limited annotation data are available. In this paper, we improve prompt learning by distilling the textual knowledge from natural language prompts (either human- or LLM-generated) to provide…Apple Machine Learning Research

On Device Llama 3.1 with Core ML

Many app developers are interested in building on device experiences that integrate increasingly capable large language models (LLMs). Running these models locally on Apple silicon enables developers to leverage the capabilities of the user’s device for cost-effective inference, without sending data to and from third party servers, which also helps protect user privacy. In order to do this, the models must be carefully optimized to effectively utilize the available system resources, because LLMs often have high demands for both memory and processing power.
This technical post details how to…Apple Machine Learning Research

Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs

Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark for machine translation that focuses on text that contains potentially culturally-nuanced entity names, and (ii) we propose KG-MT, a novel end-to-end…Apple Machine Learning Research

ConvKGYarn: Spinning Configurable and Scalable Conversational Knowledge Graph QA Datasets with Large Language Models

The rapid evolution of Large Language Models (LLMs) and conversational assistants necessitates dynamic, scalable, and configurable conversational datasets for training and evaluation. These datasets must accommodate diverse user interaction modes, including text and voice, each presenting unique modeling challenges. Knowledge Graphs (KGs), with their structured and evolving nature, offer an ideal foundation for current and precise knowledge. Although human-curated KG-based conversational datasets exist, they struggle to keep pace with the rapidly changing user information needs. We present…Apple Machine Learning Research

Computational Bottlenecks of Training Small-Scale Large Language Models

This paper was accepted at the Efficient Natural Language and Speech Processing (ENLSP) workshop at NeurIPS Workshop 2024.
While large language models (LLMs) dominate the AI landscape, Small-scale large Language Models (SLMs) are gaining attention due to cost and efficiency demands from consumers. However, there is limited research on the training behavior and computational requirements of SLMs. In this study, we explore the computational bottlenecks of training SLMs (up to 2B parameters) by examining the effects of various hyperparameters and configurations, including GPU type, batch size…Apple Machine Learning Research

Smart Audit System Empowered by LLM

Manufacturing quality audits are pivotal for ensuring high product standards in mass production environments. Traditional auditing processes, however, are labor-intensive and heavily reliant on human expertise, posing challenges in maintaining transparency, accountability, and continuous improvement across complex global supply chains. To address these challenges, we propose a smart audit system empowered by large language models (LLMs). Our approach introduces three key innovations: a dynamic risk assessment model that streamlines audit procedures and optimizes resource allocation; a…Apple Machine Learning Research