Cut Your Losses in Large-Vocabulary Language Models

As language models grow ever larger, so do their vocabularies. This has shifted the memory footprint of LLMs during training disproportionately to one single layer: the cross-entropy in the loss computation. Cross-entropy builds up a logit matrix with entries for each pair of input tokens and vocabulary items and, for small models, consumes an order of magnitude more memory than the rest of the LLM combined. We propose Cut Cross-Entropy (CCE), a method that computes the cross-entropy loss without materializing the logits for all tokens into global memory. Rather, CCE only computes the logit…Apple Machine Learning Research

Reinforcement Learning for Long-Horizon Interactive LLM Agents

Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests. While IDAs powered by instruction-tuned large language models (LLMs) can react to feedback from interface invocations in multi-step exchanges, they have not been trained in their respective digital environments. Prior methods accomplish less than half of tasks in sophisticated benchmarks such as AppWorld. We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments. We formalize this training as a partially observable Markov…Apple Machine Learning Research

Adaptive Training Distributions with Scalable Online Bilevel Optimization

Large neural networks pretrained on web-scale corpora are central to modern machine learning. In this paradigm, the distribution of the large, heterogeneous pretraining data rarely matches that of the application domain. This work considers modifying the pretraining distribution in the case where one has a small sample of data reflecting the targeted test conditions. We propose an algorithm motivated by a recent formulation of this setting as an online, bilevel optimization problem. With scalability in mind, our algorithm prioritizes computing gradients at training points which are likely to…Apple Machine Learning Research

Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo

Augmenting the multi-step reasoning abilities of Large Language Models (LLMs) has been a persistent challenge. Recently, verification has shown promise in improving solution consistency by evaluating generated outputs. However, current verification approaches suffer from sampling inefficiencies, requiring a large number of samples to achieve satisfactory performance. Additionally, training an effective verifier often depends on extensive process supervision, which is costly to acquire. In this paper, we address these limitations by introducing a novel verification method based on Twisted…Apple Machine Learning Research

Compact Neural TTS Voices for Accessibility

Contemporary text-to-speech solutions for accessibility applications can typically be classified into two categories: (i) device-based statistical parametric speech synthesis (SPSS) or unit selection (USEL) and (ii) cloud-based neural TTS. SPSS and USEL offer low latency and low disk footprint at the expense of naturalness and audio quality. Cloud-based neural TTS systems provide significantly better audio quality and naturalness but regress in terms of latency and responsiveness, rendering these impractical for real-world applications. More recently, neural TTS models were made deployable to…Apple Machine Learning Research

Mitigating Hallucinated Translations in Large Language Models with Hallucination-focused Preference Optimization

Machine Translation (MT) is undergoing a paradigm shift, with systems based on fine-tuned large language models (LLM) becoming increasingly competitive with traditional encoder-decoder models trained specifically for translation tasks. However, LLM-based systems are at a higher risk of generating hallucinations, which can severely undermine user’s trust and safety. Most prior research on hallucination mitigation focuses on traditional MT models, with solutions that involve post-hoc mitigation – detecting hallucinated translations and re-translating them. While effective, this approach…Apple Machine Learning Research

Provable Uncertainty Decomposition via Higher-Order Calibration

We give a principled method for decomposing the predictive uncertainty of a model into aleatoric and epistemic components with explicit semantics relating them to the real-world data distribution. While many works in the literature have proposed such decompositions, they lack the type of formal guarantees we provide. Our method is based on the new notion of higher-order calibration, which generalizes ordinary calibration to the setting of higher-order predictors that predict mixtures over label distributions at every point. We show how to measure as well as achieve higher-order calibration…Apple Machine Learning Research

Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models

Scaling the capacity of language models has consistently proven to be a reliable approach for
improving performance and unlocking new capabilities. Capacity can be primarily defined by
two dimensions: the number of model parameters and the compute per example. While scaling
typically involves increasing both, the precise interplay between these factors and their combined contribution to overall capacity remains not fully understood. We explore this relationship
in the context of sparse Mixture-of-Experts (MoEs) , which allow scaling the number of parameters without proportionally increasing…Apple Machine Learning Research

ELEGNT: Expressive and Functional Movement Design for Non-Anthropomorphic Robot

Nonverbal behaviors such as posture, gestures, and gaze are essential for conveying internal states, both consciously and unconsciously, in human interaction. For robots to interact more naturally with humans, robot movement design should likewise integrate expressive qualities—such as intention, attention, and emotions—alongside traditional functional considerations like task fulfillment, spatial constraints, and time efficiency. In this paper, we present the design and prototyping of a lamp-like robot that explores the interplay between functional and expressive objectives in movement…Apple Machine Learning Research

EMOTION: Expressive Motion Sequence Generation for Humanoid Robots with In-Context Learning

This paper introduces a framework, called EMOTION, for generating expressive motion sequences in humanoid robots, enhancing their ability to engage in human-like non-verbal communication. Non-verbal cues such as facial expressions, gestures, and body movements play a crucial role in effective interpersonal interactions. Despite the advancements in robotic behaviors, existing methods often fall short in mimicking the diversity and subtlety of human non-verbal communication. To address this gap, our approach leverages the in-context learning capability of large language models (LLMs) to…Apple Machine Learning Research