Machine learning (ML) and artificial intelligence (AI) systems rely heavily on human-annotated data for training and evaluation. A major challenge in this context is the occurrence of annotation errors, as their effects can degrade model performance. This paper presents a predictive error model trained to detect potential errors in search relevance annotation tasks for three industry-scale ML applications (music streaming, video streaming, and mobile apps). Drawing on real-world data from an extensive search relevance annotation program, we demonstrate that errors can be predicted with…Apple Machine Learning Research
Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments
*Equal Contributors
To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models while maintaining their high-quality output. A critical aspect of compression in practice is model comparison, including tracking many compression experiments, identifying subtle changes in model behavior, and negotiating complex accuracy-efficiency trade-offs. However, existing compression tools poorly support comparison, leading to tedious and, sometimes, incomplete analyses spread across disjoint tools. To support real-world comparative workflows, we…Apple Machine Learning Research
Contextualization of ASR with LLM Using Phonetic Retrieval-Based Augmentation
Large language models (LLMs) have shown superb capability of modeling multimodal signals including audio and text, allowing the model to generate spoken or textual response given a speech input. However, it remains a challenge for the model to recognize personal named entities, such as contacts in a phone book, when the input modality is speech. In this work, we start with a speech recognition task and propose a retrieval-based solution to contextualize the LLM: we first let the LLM detect named entities in speech without any context, then use this named entity as a query to retrieve…Apple Machine Learning Research
Speculative Streaming: Fast LLM Inference Without Auxiliary Models
Speculative decoding is a prominent technique to speed up the inference of a large target language model based on predictions of an auxiliary draft model. While effective, in application-specific settings, it often involves fine-tuning both draft and target models to achieve high acceptance rates. As the number of downstream tasks grows, these draft models add significant complexity to inference systems. We propose Speculative Streaming, a single-model speculative decoding method that fuses drafting into the target model by changing the fine-tuning objective from next token prediction to…Apple Machine Learning Research
Automated Code Fix Suggestions for Accessibility Issues in Mobile Apps
Accessibility is crucial for inclusive app usability, yet developers often struggle to identify and fix app accessibility issues due to a lack of awareness, expertise, and inadequate tools. Current accessibility testing tools can identify accessibility issues but may not always provide guidance on how to address them. We introduce FixAlly, an automated tool designed to suggest source code fixes for accessibility issues detected by automated accessibility scanners. FixAlly employs a multi-agent LLM architecture to generate fix strategies, localize issues within the source code, and propose code…Apple Machine Learning Research
Retrieval-Augmented Correction of Named Entity Speech Recognition Errors
In recent years, end-to-end automatic speech recognition (ASR) systems have proven themselves remarkably accurate and performant, but these systems still have a significant error rate for entity names which appear infrequently in their training data. In parallel to the rise of end-to-end ASR systems, large language models (LLMs) have proven to be a versatile tool for various natural language processing (NLP) tasks. In NLP tasks where a database of relevant knowledge is available, retrieval augmented generation (RAG) has achieved impressive results when used with LLMs. In this work, we propose…Apple Machine Learning Research
Ferret-UI: Grounded Mobile UI Understanding with Multimodal LLMs
Recent advancements in multimodal large language models (MLLMs) have been noteworthy, yet, these general-domain MLLMs often fall short in their ability to comprehend and interact effectively with user interface (UI) screens. In this paper, we present Ferret-UI, a new MLLM tailored for enhanced understanding of mobile UI screens, equipped with referring, grounding, and reasoning capabilities. Given that UI screens typically exhibit a more elongated aspect ratio and contain smaller objects of interest (e.g., icons, texts) than natural images, we incorporate “any resolution” on top of Ferret to…Apple Machine Learning Research
UI-JEPA: Towards Active Perception of User Intent Through Onscreen User Activity
Generating user intent from a sequence of user interface (UI) actions is a core challenge in comprehensive UI understanding. Recent advancements in multimodal large language models (MLLMs) have led to substantial progress in this area, but their demands for extensive model parameters, computing power, and high latency makes them impractical for scenarios requiring lightweight, on-device solutions with low latency or heightened privacy. Additionally, the lack of high-quality datasets has hindered the development of such lightweight models. To address these challenges, we propose UI-JEPA, a…Apple Machine Learning Research
Optimizing Byte-level Representation for End-to-End ASR
This paper was accepted at the IEEE Spoken Language Technology Workshop (SLT) 2024.
In this paper, we propose an algorithm to optimize a byte-level representation for end-to-end (E2E) automatic speech recognition (ASR). Byte-level representation is often used by large scale multilingual ASR systems when the character set of the supported languages is large. The compactness and universality of byte-level representation allow the ASR models to use smaller output and therefore, provides more flexibility. UTF-8 is the most commonly used byte-level representation and has been successfully applied…Apple Machine Learning Research