Chronomics detects COVID-19 test results with Amazon Rekognition Custom Labels

Chronomics detects COVID-19 test results with Amazon Rekognition Custom Labels

Chronomics is a tech-bio company that uses biomarkers—quantifiable information taken from the analysis of molecules—alongside technology to democratize the use of science and data to improve the lives of people. Their goal is to analyze biological samples and give actionable information to help you make decisions—about anything where knowing more about the unseen is important. Chronomics’s platform enables providers to seamlessly implement at-home diagnostics at scale—all without sacrificing efficiency or accuracy. It has already processed millions of tests through this platform and delivers a high-quality diagnostics experience.

During the COVID-19 pandemic, Chronomics sold lateral flow tests (LFT) for detecting COVID-19. The users register the test on the platform by uploading a picture of the test cassette and entering a manual reading of the test (positive, negative or invalid). With the increase in the number of tests and users, it quickly became impractical to manually verify if the reported result matched the result in the picture of the test. Chronomics wanted to build a scalable solution that uses computer vision to verify the results.

In this post, we share how Chronomics used Amazon Rekognition to automatically detect the results of a COVID-19 lateral flow test.

Preparing the data

The following image shows the picture of a test cassette uploaded by a user. The dataset consists of images like this one. These images are to be classified as positive, negative, or invalid, corresponding to the outcome of a COVID-19 test.

Sample image of a COVID-19 test casette

The main challenges with the dataset were the following:

  • Imbalanced dataset – The dataset was extremely skewed. More than 90% of the samples were from the negative class.
  • Unreliable user inputs – Readings that were manually reported by the users were not reliable. Around 40% of the readings didn’t match the actual result from the picture.

To create a high-quality training dataset, Chronomics engineers decided to follow these steps:

  • Manual annotation – Manually select and label 1,000 images to ensure that the three classes are evenly represented
  • Image augmentation – Augment the labeled images to increase the number to 10,000

Image augmentation was performed using Albumentations, an open-source Python library. A number of transformations like rotation, rescale, and brightness were performed to generate 9,000 synthetic images. These synthetic images were added to the original images to create a high-quality dataset.

Building a custom computer vision model with Amazon Rekognition

Chronomics’s engineers turned towards Amazon Rekognition Custom Labels, a feature of Amazon Rekognition with AutoML capabilities. After training images are provided, it can automatically load and inspect the data, select the right algorithms, train a model, and provide model performance metrics. This significantly accelerates the process of training and deploying a computer vision model, making it the primary reason for Chronomics to adopt Amazon Rekognition. With Amazon Rekognition, we were able to get a highly accurate model in 3–4 weeks as opposed to spending 4 months trying to build a custom model to achieve the desired performance.

The following diagram illustrates the model training pipeline. The annotated images were first preprocessed using an AWS Lambda function. This preprocessing step ensured that the images were in the appropriate file format and also performed some additional steps like resizing the image and converting the image from RGB to grayscale. It was observed that this improved the performance of the model.

Architecture diagram of the training pipeline

After the model has been trained, it can be deployed for inference using just a single click or API call.

Model performance and fine-tuning

The model yielded an accuracy of 96.5% and a F1 score of 97.9% on a set of out-of-sample images. The F1 score is a measure that uses both precision and recall to measure the performance of a classifier. The DetectCustomLabels API is used to detect the labels of a supplied image during inference. The API also returns the confidence that Rekognition Custom Labels has in the accuracy of the predicted label. The following chart has the distribution of the confidence scores of the predicted labels for the images. The x-axis represents the confidence score multiplied by 100, and the y-axis is the count of the predictions in log-scale.

By setting a threshold on the confidence score, we can filter out predictions that have a lower confidence. A threshold of 0.99 resulted in an accuracy of 99.6%, and 5% of the predictions were discarded. A threshold of 0.999 resulted in an accuracy of 99.87%, with 27% of the predictions discarded. In order to deliver the right business value, Chronomics picked a threshold of 0.99 to maximize the accuracy and minimize the rejection of predictions. For more information, see Analyzing an image with a trained model.

The discarded predictions can also be routed to a human in the loop using Amazon Augmented AI (Amazon A2I) for manually processing the image. For more information on how to do this, refer to Use Amazon Augmented AI with Amazon Rekognition.

The following image is an example where the model has correctly identified the test as invalid with a confidence of 0.999.

Conclusion

In this post, we showed the ease with which Chronomics quickly built and deployed a scalable computer vision-based solution that uses Amazon Rekognition to detect the result of a COVID-19 lateral flow test. The Amazon Rekognition API makes it very easy for practitioners to accelerate the process of building computer vision models.

Learn about how you can train computer vision models for your specific business use case by visiting Getting started with Amazon Rekognition custom labels and by reviewing the Amazon Rekognition Custom Labels Guide.


About the Authors

Mattia Spinelli is a Senior Machine Learning Engineer at Chronomics, a biomedical company. Chronomics’s platform enables providers to seamlessly implement at-home diagnostics at scale—all without sacrificing efficiency or accuracy.

Pinak Panigrahi works with customers to build machine learning driven solutions to solve strategic business problems on AWS. When not occupied with machine learning, he can be found taking a hike, reading a book or catching up with sports.

Author-JayRaoJay Rao is a Principal Solutions Architect at AWS. He enjoys providing technical and strategic guidance to customers and helping them design and implement solutions on AWS.

Pashmeen Mistry is a Senior Product Manager at AWS. Outside of work, Pashmeen enjoys adventurous hikes, photography, and spending time with his family.

Read More

Image augmentation pipeline for Amazon Lookout for Vision

Image augmentation pipeline for Amazon Lookout for Vision

Amazon Lookout for Vision provides a machine learning (ML)-based anomaly detection service to identify normal images (i.e., images of objects without defects) vs anomalous images (i.e., images of objects with defects), types of anomalies (e.g., missing piece), and the location of these anomalies. Therefore, Lookout for Vision is popular among customers that look for automated solutions for industrial quality inspection (e.g., detecting abnormal products). However, customers’ datasets usually face two problems:

  1. The number of images with anomalies could be very low and might not reach anomalies/defect type minimum imposed by Lookout for Vision (~20).
  2. Normal images might not have enough diversity and might result in the model failing when environmental conditions such as lighting change in production

To overcome these problems, this post introduces an image augmentation pipeline that targets both problems: It provides a way to generate synthetic anomalous images by removing objects in images and generates additional normal images by introducing controlled augmentation such as gaussian noise, hue, saturation, pixel value scaling etc. We use the imgaug library to introduce augmentation to generate additional anomalous and normal images for the second problem. We use Amazon Sagemaker Ground Truth to generate object removal masks and the LaMa algorithm to remove objects for the first problem using image inpainting (object removal) techniques.

The rest of the post is organized as follows. In Section 3, we present the image augmentation pipeline for normal images. In Section 4, we present the image augmentation pipeline for abnormal images (aka synthetic defect generation). Section 5 illustrates the Lookout for Vision training results using the augmented dataset. Section 6 demonstrates how the Lookout for Vision model trained on synthetic data perform against real defects. In Section 7, we talk about cost estimation for this solution. All of the code we used for this post can be accessed here.

1. Solution overview

ML diagram

The following is the diagram of the proposed image augmentation pipeline for Lookout for Vision anomaly localization model training:

The diagram above starts by collecting a series of images (step 1). We augment the dataset by augmenting the normal images (step 3) and by using object removal algorithms (steps 2, 5-6). We then package the data in a format that can be consumed by Amazon Lookout for Vision (steps 7-8). Finally, in step 9, we use the packaged data to train a Lookout for Vision localization model.

This image augmentation pipeline gives customers flexibility to generate synthetic defects in the limited sample dataset, as well as add more quantity and variety to normal images. It would boost the performance of Lookout for Vision service, solving the lack of customer data issue and making the automated quality inspection process smoother.

2. Data preparation

From here to the end of the post, we use the public FICS-PCB: A Multi-Modal Image Dataset for Automated Printed Circuit Board Visual Inspection dataset licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License to illustrate the image augmentation pipeline and the consequent Lookout for Vision training and testing. This dataset is designed to support the evaluation of automated PCB visual inspection systems. It was collected at the SeCurity and AssuraNce (SCAN) lab at the University of Florida. It can be accessed here.

We start with the hypothesis that the customer only provides a single normal image of a PCB board (a s10 PCB sample) as the dataset. It can be seen as follows:

3. Image augmentation for normal images

The Lookout for Vision service requires at least 20 normal images and 20 anomalies per defect type. Since there is only one normal image from the sample data, we must generate more normal images using image augmentation techniques. From the ML standpoint, feeding multiple image transformations using different augmentation techniques can improve the accuracy and robustness of the model.

We’ll use imgaug for image augmentation of normal images. Imgaug is an open-source python package that lets you augment images in ML experiments.

First, we’ll install the imgaug library in an Amazon SageMaker notebook.

pip install imgaug

Next, we can install the python package named ‘IPyPlot’.

pip install ipyplot

Then, we perform image augmentation of the original image using transformations including GammaContrast, SigmoidContrast, and LinearContrast, and adding Gaussian noise on the image.

import imageio
import imgaug as ia
import imgaug.augmenters as iaa
import ipyplot
input_img = imageio.imread('s10.png')
noise=iaa.AdditiveGaussianNoise(10,40)
input_noise=noise.augment_image(input_img)
contrast=iaa.GammaContrast((0.5, 2.0))
contrast_sig = iaa.SigmoidContrast(gain=(5, 10), cutoff=(0.4, 0.6))
contrast_lin = iaa.LinearContrast((0.6, 0.4))
input_contrast = contrast.augment_image(input_img)
sigmoid_contrast = contrast_sig.augment_image(input_img)
linear_contrast = contrast_lin.augment_image(input_img)
images_list=[input_img, input_contrast,sigmoid_contrast,linear_contrast,input_noise]
labels = ['Original', 'Gamma Contrast','SigmoidContrast','LinearContrast','Gaussian Noise Image']
ipyplot.plot_images(images_list,labels=labels,img_width=180)

Since we need at least 20 normal images, and the more the better, we generated 10 augmented images for each of the 4 transformations shown above as our normal image dataset. In the future, we plan to also transform the images to be positioned at difference locations and different angels so that the trained model can be less sensitive to the placement of the object relative to the fixed camera.

4. Synthetic defect generation for augmentation of abnormal images

In this section, we present a synthetic defect generation pipeline to augment the number of  images with anomalies in the dataset. Note that, as opposed to the previous section where we create new normal samples from existing normal samples, here, we create new anomaly images from normal samples. This is an attractive feature for customers that completely lack this kind of images in their datasets, e.g., removing a component of the normal PCB board. This synthetic defect generation pipeline has three steps: first, we generate synthetic masks from source (normal) images using Amazon SageMaker Ground Truth. In this post, we target at a specific defect type: missing component. This mask generation provides a mask image and a manifest file. Second, the manifest file must be modified and converted to an input file for a SageMaker endpoint. And third, the input file is input to an Object Removal SageMaker endpoint responsible of removing the parts of the normal image indicated by the mask. This endpoint provides the resulting abnormal image.

4.1 Generate synthetic defect masks using Amazon SageMaker Ground Truth

Amazon Sagemaker Ground Truth for data labeling

Amazon SageMaker Ground Truth is a data labeling service that makes it easy to label data and gives you the option to use human annotators through Amazon Mechanical Turk, third-party vendors, or your own private workforce. You can follow this tutorial to set up a labeling job.

In this section, we’ll show how we use Amazon SageMaker Ground Truth to mark specific “components” in normal images to be removed in the next step. Note that a key contribution of this post is that we don’t use Amazon SageMaker Ground Truth in its traditional way (that is, to label training images). Here, we use it to generate a mask for future removal in normal images. These removals in normal images will generate the synthetic defects.

For the purpose of this post, in our labeling job we’ll artificially remove up to three components from the PCB board: IC, resistor1, and resistor2. After entering the labeling job as a labeler, you can select the label name and draw a mask of any shape around the component that you want to remove from the image as a synthetic defect. Note that you can’t include ‘_’ in the label name for this experiment, since we use ‘_’ to separate different metadata in the defect name later in the code.

In the following picture, we draw a green mask around IC (Integrated Circuit), a blue mask around resistor 1, and an orange mask around resistor 2.

After we select the submit button, Amazon SageMaker Ground Truth will generate an output mask with white background and a manifest file as follows:

{"source-ref":"s3://pcbtest22/label/s10.png","s10-label-ref":"s3://pcbtest22/label/s10-label/annotations/consolidated-annotation/output/0_2022-09-08T18:01:51.334016.png","s10-label-ref-metadata":{"internal-color-map":{"0":{"class-name":"BACKGROUND","hex-color":"#ffffff","confidence":0},"1":{"class-name":"IC","hex-color":"#2ca02c","confidence":0},"2":{"class-name":"resistor_1","hex-color":"#1f77b4","confidence":0},"3":{"class-name":"resistor_2","hex-color":"#ff7f0e","confidence":0}},"type":"groundtruth/semantic-segmentation","human-annotated":"yes","creation-date":"2022-09-08T18:01:51.498525","job-name":"labeling-job/s10-label"}}

Note that so far we haven’t generated any abnormal images. We just marked the three components that will be artificially removed and whose removal will generate abnormal images. Later, we’ll use both (1) the mask image above, and (2) the information from the manifest file as inputs for the abnormal image generation pipeline. The next section shows how to prepare the input for the SageMaker endpoint.

4.2 Prepare Input for SageMaker endpoint

Transform Amazon SageMaker Ground Truth manifest as a SageMaker endpoint input file

First, we set up an Amazon Simple Storage Service (Amazon S3) bucket to store all of the input and output for the image augmentation pipeline. In the post, we use an S3 bucket named qualityinspection. Then we generate all of the augmented normal images and upload them to this S3 bucket.

from PIL import Image 
import os 
import shutil 
import boto3

s3=boto3.client('s3')

# make the image directory
dir_im="images"
if not os.path.isdir(dir_im):
    os.makedirs(dir_im)
# create augmented images from original image
input_img = imageio.imread('s10.png')

for i in range(10):
    noise=iaa.AdditiveGaussianNoise(scale=0.2*255)
    contrast=iaa.GammaContrast((0.5,2))
    contrast_sig = iaa.SigmoidContrast(gain=(5,20), cutoff=(0.25, 0.75))
    contrast_lin = iaa.LinearContrast((0.4,1.6))
      
    input_noise=noise.augment_image(input_img)
    input_contrast = contrast.augment_image(input_img)
    sigmoid_contrast = contrast_sig.augment_image(input_img)
    linear_contrast = contrast_lin.augment_image(input_img)
      
    im_noise = Image.fromarray(input_noise)
    im_noise.save(f'{dir_im}/input_noise_{i}.png')

    im_input_contrast = Image.fromarray(input_contrast)
    im_input_contrast.save(f'{dir_im}/contrast_sig_{i}.png')

    im_sigmoid_contrast = Image.fromarray(sigmoid_contrast)
    im_sigmoid_contrast.save(f'{dir_im}/sigmoid_contrast_{i}.png')

    im_linear_contrast = Image.fromarray(linear_contrast)
    im_linear_contrast.save(f'{dir_im}/linear_contrast_{i}.png')
    
# move original image to image augmentation folder
shutil.move('s10.png','images/s10.png')
# list all the images in the image directory
imlist =  [file for file in os.listdir(dir_im) if file.endswith('.png')]

# upload augmented images to an s3 bucket
s3_bucket='qualityinspection'
for i in range(len(imlist)):
    with open('images/'+imlist[i], 'rb') as data:
        s3.upload_fileobj(data, s3_bucket, 'images/'+imlist[i])

# get the image s3 locations
im_s3_list=[]
for i in range(len(imlist)):
    image_s3='s3://qualityinspection/images/'+imlist[i]
    im_s3_list.append(image_s3)

Next, we download the mask from Amazon SageMaker Ground Truth and upload it to a folder named ‘mask’ in that S3 bucket.

# download Ground Truth annotation mask image to local from the Ground Truth s3 folder
s3.download_file('pcbtest22', 'label/S10-label3/annotations/consolidated-annotation/output/0_2022-09-09T17:25:31.918770.png', 'mask.png')
# upload mask to mask folder
s3.upload_file('mask.png', 'qualityinspection', 'mask/mask.png')

After that, we download the manifest file from Amazon SageMaker Ground Truth labeling job and read it as json lines.

import json
#download output manifest to local
s3.download_file('pcbtest22', 'label/S10-label3/manifests/output/output.manifest', 'output.manifest')
# read the manifest file
with open('output.manifest','rt') as the_new_file:
    lines=the_new_file.readlines()
    for line in lines:
        json_line = json.loads(line)

Lastly, we generate an input dictionary which records the input image’s S3 location, mask location, mask information, etc., save it as txt file, and then upload it to the target S3 bucket ‘input’ folder.

# create input dictionary
input_dat=dict()
input_dat['input-image-location']=im_s3_list
input_dat['mask-location']='s3://qualityinspection/mask/mask.png'
input_dat['mask-info']=json_line['S10-label3-ref-metadata']['internal-color-map']
input_dat['output-bucket']='qualityinspection'
input_dat['output-project']='synthetic_defect'

# Write the input as a txt file and upload it to s3 location
input_name='input.txt'
with open(input_name, 'w') as the_new_file:
    the_new_file.write(json.dumps(input_dat))
s3.upload_file('input.txt', 'qualityinspection', 'input/input.txt')

The following is a sample input file:

{"input-image-location": ["s3://qualityinspection/images/s10.png", ... "s3://qualityinspection/images/contrast_sig_1.png"], "mask-location": "s3://qualityinspection/mask/mask.png", "mask-info": {"0": {"class-name": "BACKGROUND", "hex-color": "#ffffff", "confidence": 0}, "1": {"class-name": "IC", "hex-color": "#2ca02c", "confidence": 0}, "2": {"class-name": "resistor1", "hex-color": "#1f77b4", "confidence": 0}, "3": {"class-name": "resistor2", "hex-color": "#ff7f0e", "confidence": 0}}, "output-bucket": "qualityinspection", "output-project": "synthetic_defect"}

4.3 Create Asynchronous SageMaker endpoint to generate synthetic defects with missing components

4.3.1 LaMa Model

To remove components from the original image, we’re using an open-source PyTorch model called LaMa from LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. It’s a resolution-robust large mask in-painting model with Fourier convolutions developed by Samsung AI. The inputs for the model are an image and a black and white mask and the output is an image with the objects inside the mask removed. We use Amazon SageMaker Ground Truth to create the original mask, and then transform it to a black and white mask as required. The LaMa model application is demonstrated as following:

4.3.2 Introducing Amazon SageMaker Asynchronous inference 

Amazon SageMaker Asynchronous Inference is a new inference option in Amazon SageMaker that queues incoming requests and processes them asynchronously. Asynchronous inference enables users to save on costs by autoscaling the instance count to zero when there are no requests to process. This means that you only pay when your endpoint is processing requests. The new asynchronous inference option is ideal for workloads where the request sizes are large (up to 1GB) and inference processing times are in the order of minutes. The code to deploy and invoke the endpoint is here.

4.3.3 Endpoint deployment

To deploy the asynchronous endpoint, first we must get the IAM role and set up some environment variables.

from sagemaker import get_execution_role
from sagemaker.pytorch import PyTorchModel
import boto3

role = get_execution_role()
env = dict()
env['TS_MAX_REQUEST_SIZE'] = '1000000000'
env['TS_MAX_RESPONSE_SIZE'] = '1000000000'
env['TS_DEFAULT_RESPONSE_TIMEOUT'] = '1000000'
env['DEFAULT_WORKERS_PER_MODEL'] = '1'

As we mentioned before, we’re using open source PyTorch model LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions and the pre-trained model has been uploaded to s3://qualityinspection/model/big-lama.tar.gz. The image_uri points to a docker container with the required framework and python versions.

model = PyTorchModel(
    entry_point="./inference_defect_gen.py",
    role=role,
    source_dir = './',
    model_data='s3://qualityinspection/model/big-lama.tar.gz',
    image_uri = '763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference:1.11.0-gpu-py38-cu113-ubuntu20.04-sagemaker',
    framework_version="1.7.1",
    py_version="py3",
    env = env,
    model_server_workers=1
)

Then, we must specify additional asynchronous inference specific configuration parameters while creating the endpoint configuration.

from sagemaker.async_inference.async_inference_config import AsyncInferenceConfig
bucket = 'qualityinspection'
prefix = 'async-endpoint'
async_config = AsyncInferenceConfig(output_path=f"s3://{bucket}/{prefix}/output",max_concurrent_invocations_per_instance=10)

Next, we deploy the endpoint on a ml.g4dn.xlarge instance by running the following code:

predictor = model.deploy(
    initial_instance_count=1,
    instance_type='ml.g4dn.xlarge',
    model_server_workers=1,
    async_inference_config=async_config
)

After approximately 6-8 minutes, the endpoint is created successfully, and it will show up in the SageMaker console.

4.3.4 Invoke the endpoint

Next, we use the input txt file we generated earlier as the input of the endpoint and invoke the endpoint using the following code:

import boto3
runtime= boto3.client('runtime.sagemaker')
response = runtime.invoke_endpoint_async(EndpointName='pytorch-inference-2022-09-16-02-04-37-888',
                                   InputLocation='s3://qualityinspection/input/input.txt')

The above command will finish execution immediately. However, the inference will continue for several minutes until it completes all of the tasks and returns all of the outputs in the S3 bucket.

4.3.5 Check the inference result of the endpoint 

After you select the endpoint, you’ll see the Monitor session. Select ‘View logs’ to check the inference results in the console.

Two log records will show up in Log streams. The one named data-log will show the final inference result, while the other log record will show the details of the inference, which is usually used for debug purposes.

If the inference request succeeds, then you’ll see the message: Inference request succeeded.in the data-log and also get information of the total model latency, total process time, etc. in the message. If the inference fails, then check the other log to debug. You can also check the result by polling the status of the inference request. Learn more about the Amazon SageMaker Asynchronous inference here.

4.3.6 Generating synthetic defects with missing components using the endpoint

We’ll complete four tasks in the endpoint:

  1. The Lookout for Vision anomaly localization service requires one defect per image in the training dataset to optimize model performance. Therefore, we must separate the masks for different defects in the endpoint by color filtering.
  2. Split train/test dataset to satisfy the following requirement:
    • at least 10 normal images and 10 anomalies for train dataset
    • one defect/image in train dataset
    • at least 10 normal images and 10 anomalies for test dataset
    • multiple defects per image is allowed for the test dataset
  3. Generate synthetic defects and upload them to the target S3 locations.

We generate one defect per image and more than 20 defects per class for train dataset, as well as 1-3 defects per image and more than 20 defects per class for the test dataset.

The following is an example of the source image and its synthetic defects with three components: IC, resistor1, and resistor 2 missing.

original image

original image

40_im_mask_IC_resistor1_resistor2.jpg (the defect name indicates the missing components)

40_im_mask_IC_resistor1_resistor2.jpg (the defect name indicates the missing components)

  1.  Generate manifest files for train/test dataset recording all of the above information.

Finally, we’ll generate train/test manifests to record information, such as synthetic defect S3 location, mask S3 location, defect class, mask color, etc.

The following are sample json lines for an anomaly and a normal image in the manifest.

For anomaly:

{"source-ref": "s3://qualityinspection/synthetic_defect/anomaly/train/6_im_mask_IC.jpg", "auto-label": 11, "auto-label-metadata": {"class-name": "anomaly", "type": "groundtruth/image-classification"}, "anomaly-mask-ref": "s3://qualityinspection/synthetic_defect/mask/MixMask/mask_IC.png", "anomaly-mask-ref-metadata": {"internal-color-map": {"0": {"class-name": "IC", "hex-color": "#2ca02c", "confidence": 0}}, "type": "groundtruth/semantic-segmentation"}}

For normal image:

{"source-ref": "s3://qualityinspection/synthetic_defect/normal/train/25_im.jpg", "auto-label": 12, "auto-label-metadata": {"class-name": "normal", "type": "groundtruth/image-classification"}}

4.3.7 Amazon S3 folder structure

The input and output of the endpoint are stored in the target S3 bucket in the following structure:

5 Lookout for Vision model training and result

5.1 Set up a project, upload dataset, and start model training. 

  1. First, you can go to Lookout for Vision from the AWS Console and create a project.
  2. Then, you can create a training dataset by choosing Import images labeled by SageMaker Ground Truth and give the Amazon S3 location of the train dataset manifest generated by the SageMaker endpoint.
  3. Next, you can create a test dataset by choosing Import images labeled by SageMaker Ground Truth again, and give the Amazon S3 location of the test dataset manifest generated by the SageMaker endpoint.

    …….
    ….
  4. After the train and test datasets are uploaded successfully, you can select the Train model button at the top right corner to trigger the anomaly localization model training.
    ……
  5. In our experiment, the model took slightly longer than one hour to complete training. When the status shows training complete, you can select the model link to check the result.
    ….

5.2 Model training result

5.2.1 Model performance metrics 

After selecting at the Model 1 as shown above, we can see from the 100% Precision, 100% Recall, and 100% F1 score that the model performance is quite good. We can also check the performance per label (missing component), and we’ll be happy to find that all three labels’ F1 scores are above 93%, and the Average IoUs are above 85%. This result is satisfying for this small dataset that we demonstrated in the post.

5.2.2 Visualization of synthetic defects detection in the test dataset. 

As the following image shows, each image will be defected as an normal or anomaly label with a confidence score. If it’s an anomaly, then it will show a mask over the abnormal area in the image with a different color for each defect type.

The following is an example of combined missing components (three defects in this case) in the test dataset:

Next you can compile and package the model as an AWS IoT Greengrass component following the instructions in this post, Identify the location of anomalies using Amazon Lookout for Vision at the edge without using a GPU, and run inferences on the model.

6. Test the Lookout for Vision model trained on synthetic data against real defects

To test if the model trained on the synthetic defect can perform well against real defects, we picked a dataset (aliens-dataset) from here to run an experiment.

First, we compare the generated synthetic defect and the real defect. The left image is a real defect with a missing head, and the right image is a generated defect with the head removed using an ML model.

Real defect

Real defect

 Synthetic defect

Synthetic defect

Second, we use the trial detections in Lookout for Vision to test the model against the real defect. You can either save the test images in the S3 bucket and import them from Amazon S3 or upload images from your computer. Then, select Detect anomalies to run the detection.

Finally, you can see the prediction result of the real defect. The model trained on synthetic defects can defect the real defect accurately in this experiment.

The model trained on synthetic defects may not always perform well on real defects, especially circuit boards which are much more complicated than this sample dataset. If you want to retrain the model with real defects, then you can select the orange button labeled Verify machine predictions in the upper right corner of the prediction result, and then check it as Correct or Incorrect.

Then you can add the verified image and label to the training dataset by selecting the orange button in the upper right corner to enhance model performance.

7. Cost estimation 

This image augmentation pipeline for Lookout for Vision is very cost-effective. In the example shown above, Amazon SageMaker Ground Truth Labeling, Amazon SageMaker notebook, and SageMaker asynchronous endpoint deployment and inference only cost a few dollars. For Lookout for Vision service, you pay only for what you use. There are three components that determine your bill: charges for training the model (training hours), charges for detecting anomalies on the cloud (cloud inference hours), and/or charges for detecting anomalies on the edge (edge inference units). In our experiment, the Lookout for Vision model took slightly longer than one hour to complete training, and it cost $2.00 per training hour. Furthermore, you can use the trained model for inference on the cloud or on the edge with the price listed here.

8. Clean up

To avoid incurring unnecessary charges, use the Console to delete the endpoints and resources that you created while running the exercises in the post.

  1. Open the SageMaker console and delete the following resources:
    • The endpoint. Deleting the endpoint also deletes the ML compute instance or instances that support it.
      1. Under Inference, choose Endpoints.
      2. Choose the endpoint that you created in the example, choose Actions, and then choose Delete.
    • The endpoint configuration.
      1. Under Inference, choose Endpoint configurations.
      2. Choose the endpoint configuration that you created in the example, choose Actions, and then choose Delete.
    • The model.
      1. Under Inference, choose Models.
      2. Choose the model that you created in the example, choose Actions, and then choose Delete.
    • The notebook instance. Before deleting the notebook instance, stop it.
      1. Under Notebook, choose Notebook instances.
      2. Choose the notebook instance that you created in the example, choose Actions, and then choose Stop. The notebook instance takes several minutes to stop. When the Status changes to Stopped, move on to the next step.
      3. Choose Actions, and then choose Delete.
  2. Open the Amazon S3 console, and then delete the bucket that you created for storing model artifacts and the training dataset.
  3. Open the Amazon CloudWatch console, and then delete all of the log groups that have names starting with /aws/sagemaker/.

You can also delete the endpoint from SageMaker notebook by running the following code:

import boto3
sm_boto3 = boto3.client("sagemaker")
sm_boto3.delete_endpoint(EndpointName='endpoint name')

9. Conclusion

In this post, we demonstrated how to annotate synthetic defect masks using Amazon SageMaker Ground Truth, how to use different image augmentation techniques to transform one normal image to the desired number of normal images, create an asynchronous SageMaker endpoint and prepare the input file for the endpoint, as well as invoke the endpoint. At last, we demonstrated how to use the train/test manifest to train a Lookout for Vision anomaly localization model. This proposed pipeline can be extended to other ML models to generate synthetic defects, and all you need to do is to customize the model and inference code in the SageMaker endpoint.

Start by exploring Lookout for Vision for automated quality inspection here.


About the Authors

Kara Yang is a Data Scientist at AWS Professional Services. She is passionate about helping customers achieve their business goals with AWS cloud services and has helped organizations build end to end AI/ML solutions across multiple industries such as manufacturing, automotive, environmental sustainability and aerospace.

Octavi Obiols-Sales is a computational scientist specialized in deep learning (DL) and machine learning certified as an associate solutions architect. With extensive knowledge in both the cloud and the edge, he helps to accelerate business outcomes through building end-to-end AI solutions. Octavi earned his PhD in computational science at the University of California, Irvine, where he pushed the state-of-the-art in DL+HPC algorithms.

Fabian Benitez-Quiroz is a IoT Edge Data Scientist in AWS Professional Services. He holds a PhD in Computer Vision and Pattern Recognition from The Ohio State University. Fabian is involved in helping customers run their Machine Learning models with low latency on IoT devices and in the cloud.

Manish Talreja is a Principal Product Manager for IoT Solutions at AWS. He is passionate about helping customers build innovative solutions using AWS IoT and ML services in the cloud and at the edge.

Yuxin Yang is an AI/ML architect at AWS, certified in the AWS Machine Learning Specialty. She enables customers to accelerate their outcomes through building end-to-end AI/ML solutions, including predictive maintenance, computer vision and reinforcement learning. Yuxin earned her MS from Stanford University, where she focused on deep learning and big data analytics.

Yingmao Timothy Li is a Data Scientist with AWS. He has joined AWS 11 months ago and he works with a broad range of services and machine learning technologies to build solutions for a diverse set of customers. He holds a Ph.D in Electrical Engineering. In his spare time, He enjoys outdoor games, car racing, swimming, and flying a piper cub to cross country and explore the sky.

 

Read More

Amazon SageMaker JumpStart now offers Amazon Comprehend notebooks for custom classification and custom entity detection

Amazon SageMaker JumpStart now offers Amazon Comprehend notebooks for custom classification and custom entity detection

Amazon Comprehend is a natural language processing (NLP) service that uses machine learning (ML) to discover insights from text. Amazon Comprehend provides customized features, custom entity recognition, custom classification, and pre-trained APIs such as key phrase extraction, sentiment analysis, entity recognition, and more so you can easily integrate NLP into your applications.

We recently added Amazon Comprehend related notebooks in Amazon SageMaker JumpStart notebooks that can help you quickly get started using the Amazon Comprehend custom classifier and custom entity recognizer. You can use custom classification to organize documents into categories (classes) that you define. Custom entity recognition extends the capability of the Amazon Comprehend pre-trained entity detection API by helping you identify entity types that are unique to your domain or business that aren’t in the preset generic entity types.

In this post, we show you how to use JumpStart to build Amazon Comprehend custom classification and custom entity detection models as part of your enterprise NLP needs.

SageMaker JumpStart

The Amazon SageMaker Studio landing page provides the option to use JumpStart. JumpStart provides a quick way to get started by providing pre-trained models for a variety of problem types. You can train and tune these models. JumpStart also provides other resources like notebooks, blogs, and videos.

JumpStart notebooks are essentially sample code that you can use as a starting point to get started quickly. Currently, we provide you with over 40 notebooks that you can use as is or customize as needed. You can find your notebooks by using search or the tabbed view panel. After you find the notebook you want to use, you can import the notebook, customize it for your requirements, and select the infrastructure and environment to run the notebook on.

Get started with JumpStart notebooks

To get started with JumpStart, go to the Amazon SageMaker console and open Studio. Refer to Get Started with SageMaker Studio for instructions on how to get started with Studio. Then complete the following steps:

  1. In Studio, go to the launch page of JumpStart and choose Go to SageMaker JumpStart.

Go to SageMaker JumpStart

You’re offered multiple ways to search. You may either use tabs on the top to get to what you want, or use the search box as shown in the following screenshot.

  1. To find notebooks, we go to the Notebooks tab.

Go to Notebooks tab

At the time of writing, JumpStart offers 47 notebooks. You can use filters to find Amazon Comprehend related notebooks.

  1. On the Content Type drop-down menu, choose Notebook.

As you can see in the following screenshot, we currently have two Amazon Comprehend notebooks.

Find Comprehend Notebooks

In the following sections, we explore both notebooks.

Amazon Comprehend Custom Classifier

In this notebook, we demonstrate how to use the custom classifier API to create a document classification model.

The custom classifier is a fully managed Amazon Comprehend feature that lets you build custom text classification models that are unique to your business, even if you have little or no ML expertise. The custom classifier builds on the existing capabilities of Amazon Comprehend, which are already trained on tens of millions of documents. It abstracts much of the complexity required to build a NLP classification model. The custom classifier automatically loads and inspects the training data, selects the right ML algorithms, trains your model, finds the optimal hyperparameters, tests the model, and provides model performance metrics. The Amazon Comprehend custom classifier also provides an easy-to-use console for the entire ML workflow, including labeling text using Amazon SageMaker Ground Truth, training and deploying a model, and visualizing the test results. With an Amazon Comprehend custom classifier, you can build the following models:

  • Multi-class classification model – In multi-class classification, each document can have one and only one class assigned to it. The individual classes are mutually exclusive. For example, a movie can be classed as a documentary or as science fiction, but not both at the same time.
  • Multi-label classification model – In multi-label classification, individual classes represent different categories, but these categories are somehow related and not mutually exclusive. As a result, each document has at least one class assigned to it, but can have more. For example, a movie can simply be an action movie, or it can be an action movie, a science fiction movie, and a comedy, all at the same time.

This notebook requires no ML expertise to train a model with the example dataset or with your own business specific dataset. You can use the API operations discussed in this notebook in your own applications.

Amazon Custom Entity Recognizer

In this notebook, we demonstrate how to use the custom entity recognition API to create an entity recognition model.

Custom entity recognition extends the capabilities of Amazon Comprehend by helping you identify your specific entity types that aren’t in the preset generic entity types. This means that you can analyze documents and extract entities like product codes or business-specific entities that fit your particular needs.

Building an accurate custom entity recognizer on your own can be a complex process, requiring preparation of large sets of manually annotated training documents and selecting the right algorithms and parameters for model training. Amazon Comprehend helps reduce the complexity by providing automatic annotation and model development to create a custom entity recognition model.

The example notebook takes the training dataset in CSV format and runs inference against text input. Amazon Comprehend also supports an advanced use case that takes Ground Truth annotated data for training and allows you to directly run inference on PDFs and Word documents. For more information, refer to Build a custom entity recognizer for PDF documents using Amazon Comprehend.

Amazon Comprehend has lowered the annotation limits and allowed you to get more stable results, especially for few-shot subsamples. For more information about this improvement, refer to Amazon Comprehend announces lower annotation limits for custom entity recognition.

This notebook requires no ML expertise to train a model with the example dataset or with your own business specific dataset. You can use the API operations discussed in this notebook in your own applications.

Use, customize, and deploy Amazon Comprehend JumpStart notebooks

After you select the Amazon Comprehend notebook you want to use, choose Import notebook. As you do that, you can see the notebook kernel starting.

Import Notebook

Importing your notebook triggers selection of the notebook instance, kernel, and image that is used to run the notebook. After the default infrastructure is provisioned, you can change the selections as per your requirements.

Notebook in your SageMaker Studio

Now, go over the outline of the notebook and carefully read the sections for prerequisites setup, data setup, training the model, running inference, and stopping the model. Feel free to customize the generated code per your needs.

Based on your requirements, you may want to customize the following sections:

  • Permissions – For a production application, we recommend restricting access policies to only those needed to run the application. Permissions can be restricted based on the use case, such as training or inference, and specific resource names, such as a full Amazon Simple Storage Service (Amazon S3) bucket name or an S3 bucket name pattern. You should also restrict access to the custom classifier or SageMaker operations to just those that your application needs.
  • Data and location – The example notebook provides you sample data and S3 locations. Based on your requirements, you may use your own data for training, validation, and testing, and use different S3 locations as needed. Similarly, when the model is created, you can choose to keep the model at different locations. Just make sure you have provided the right permissions to access S3 buckets.
  • Preprocessing steps – If you’re using different data for training and testing, you may want to adjust the preprocessing steps per your requirements.
  • Testing data – You can bring your own inference data for testing.
  • Clean up – Delete the resources launched by the notebook to avoid recurring charges.

Conclusion

In this post, we showed you how to use JumpStart to learn and fast-track using Amazon Comprehend APIs by making it convenient to find and run Amazon Comprehend related notebooks from Studio while having the option to modify the code as needed. The notebooks use sample datasets with AWS product announcements and sample news articles. You may use this notebook to learn how to use Amazon Comprehend APIs in a Python notebook, or you may use it as a starting point and expand the code further for your unique requirements and production deployments.

You can start using JumpStart and take advantage of over 40 notebooks in various topics in all Regions where Studio is available at no additional cost.


About the Authors

Author - Lana ZhangLana Zhang is a Sr. Solutions Architect at the AWS WWSO AI Services team with expertise in AI and ML for Content Moderation and Rekognition. She is passionate about promoting AWS AI services and helping customers transform their business solutions.

Author - Meenakshisundaram ThandavarayanMeenakshisundaram Thandavarayan is a Senior AI/ML specialist with AWS. He helps hi-tech strategic accounts on their AI and ML journey. He is very passionate about data-driven AI

Author - Rachna ChadhaRachna Chadha is a Principal Solution Architect AI/ML in Strategic Accounts at AWS. Rachna is an optimist who believes that ethical and responsible use of AI can improve society in the future and bring economic and social prosperity. In her spare time, Rachna likes spending time with her family, hiking, and listening to music.

Read More

Prepare data from Amazon EMR for machine learning using Amazon SageMaker Data Wrangler

Prepare data from Amazon EMR for machine learning using Amazon SageMaker Data Wrangler

Data preparation is a principal component of machine learning (ML) pipelines. In fact, it is estimated that data professionals spend about 80 percent of their time on data preparation. In this intensive competitive market, teams want to analyze data and extract more meaningful insights quickly. Customers are adopting more efficient and visual ways to build data processing systems.

Amazon SageMaker Data Wrangler simplifies the data preparation and feature engineering process, reducing the time it takes from weeks to minutes by providing a single visual interface for data scientists to select, clean data, create features, and automate data preparation in ML workflows without writing any code. You can import data from multiple data sources, such as Amazon Simple Storage Service (Amazon S3), Amazon Athena, Amazon Redshift, and Snowflake. You can now also use Amazon EMR as a data source in Data Wrangler to easily prepare data for ML.

Analyzing, transforming, and preparing large amounts of data is a foundational step of any data science and ML workflow. Data professionals such as data scientists want to leverage the power of Apache Spark, Hive, and Presto running on Amazon EMR for fast data preparation, but the learning curve is steep. Our customers wanted the ability to connect to Amazon EMR to run ad hoc SQL queries on Hive or Presto to query data in the internal metastore or external metastore (e.g., AWS Glue Data Catalog), and prepare data within a few clicks.

This blog article will discuss how customers can now find and connect to existing Amazon EMR clusters using a visual experience in SageMaker Data Wrangler. They can visually inspect the database, tables, schema, and Presto queries to prepare for modeling or reporting. They can then quickly profile data using a visual interface to assess data quality, identify abnormalities or missing or erroneous data, and receive information and recommendations on how to address these issues. Additionally, they can analyze, clean, and engineer features with the aid of more than a dozen additional built-in analyses and 300+ extra built-in transformations backed by Spark without writing a single line of code.

Solution overview 

Data professionals can quickly find and connect to existing EMR clusters using SageMaker Studio configurations. Additionally, data professionals can terminate EMR clusters with only a few clicks from SageMaker Studio using predefined templates and on-demand creation of EMR clusters. With the help of these tools, customers may jump right into the SageMaker Studio universal notebook and write code in Apache Spark, Hive, Presto, or PySpark to perform data preparation at scale. Due to a steep learning curve for creating Spark code to prepare data, not all data professionals are comfortable with this procedure. With Amazon EMR as a data source for Amazon SageMaker Data Wrangler, you can now quickly and easily connect to Amazon EMR without writing a single line of code.

The following diagram represents the different components used in this solution.

We demonstrate two authentication options that can be used to establish a connection to the EMR cluster. For each option, we deploy a unique stack of AWS CloudFormation templates.

The CloudFormation template performs the following actions when each option is selected:

  • Creates a Studio Domain in VPC-only mode, along with a user profile named studio-user.
  • Creates building blocks, including the VPC, endpoints, subnets, security groups, EMR cluster, and other required resources to successfully run the examples.
  • For the EMR cluster, connects the AWS Glue Data Catalog as metastore for EMR Hive and Presto, creates a Hive table in EMR, and fills it with data from a US airport dataset.
  • For the LDAP CloudFormation template, creates an Amazon Elastic Compute Cloud (Amazon EC2) instance to host the LDAP server to authenticate the Hive and Presto LDAP user.

Option 1: Lightweight Access Directory Protocol

For the LDAP authentication CloudFormation template, we provision an Amazon EC2 instance with an LDAP server and configure the EMR cluster to use this server for authentication. This is TLS Enabled.

Option 2: No-Auth

In the No-Auth authentication CloudFormation template, we use a standard EMR cluster with no authentication enabled.

Deploy the resources with AWS CloudFormation

Complete the following steps to deploy the environment:

  1. Sign in to the AWS Management Console as an AWS Identity and Access Management (IAM) user, preferably an admin user.
  2. Choose Launch Stack to launch the CloudFormation template for the appropriate authentication scenario. Make sure the Region used to deploy the CloudFormation stack has no existing Studio Domain. If you already have a Studio Domain in a Region, you may choose a different Region.
    • LDAP Launch Stack
    • No Auth Launch Stack
  3. Choose Next.
  4. For Stack name, enter a name for the stack (for example, dw-emr-blog).
  5. Leave the other values as default.
  6. To continue, choose Next from the stack details page and stack options. The LDAP stack uses the following credentials:
    • username: david
    • password:  welcome123
  7. On the review page, select the check box to confirm that AWS CloudFormation might create resources.
  8. Choose Create stack. Wait until the status of the stack changes from CREATE_IN_PROGRESS to CREATE_COMPLETE. The process usually takes 10–15 minutes.

Note: If you would like to try multiple stacks, please follow the steps in the Clean up section. Remember that you must delete the SageMaker Studio Domain before the next stack can be successfully launched.

Set up the Amazon EMR as a data source in Data Wrangler

In this section, we cover connecting to the existing Amazon EMR cluster created through the CloudFormation template as a data source in Data Wrangler.

Create a new data flow

To create your data flow, complete the following steps:

  1. On the SageMaker console, choose Amazon SageMaker Studio in the navigation pane.
  2. Choose Open studio.
  3. In the Launcher, choose New data flow. Alternatively, on the File drop-down, choose New, then choose Data Wrangler flow.
  4. Creating a new flow can take a few minutes. After the flow has been created, you see the Import data page.

Add Amazon EMR as a data source in Data Wrangler

On the Add data source menu, choose Amazon EMR.

You can browse all the EMR clusters that your Studio execution role has permissions to see. You have two options to connect to a cluster; one is through interactive UI, and the other is to first create a secret using AWS Secrets Manager with JDBC URL, including EMR cluster information, and then provide the stored AWS secret ARN in the UI to connect to Presto. In this blog, we follow the first option. Select one of the following clusters that you want to use. Click on Next, and select endpoints.

Select Presto, connect to Amazon EMR, create a name to identify your connection, and click Next.

Select Authentication type, either LDAP or No Authentication, and click Connect.

  • For Lightweight Directory Access Protocol (LDAP), provide username and password to be authenticated.

  • For No Authentication, you will be connected to EMR Presto without providing user credentials within VPC. Enter Data Wrangler’s SQL explorer page for EMR.

Once connected, you can interactively view a database tree and table preview or schema. You can also query, explore, and visualize data from EMR. For preview, you would see a limit of 100 records by default. For customized query, you can provide SQL statements in the query editor box and once you click the Run button, the query will be executed on EMR’s Presto engine.

The Cancel query button allows ongoing queries to be canceled if they are taking an unusually long time.

The last step is to import. Once you are ready with the queried data, you have options to update the sampling settings for the data selection according to the sampling type (FirstK, Random, or Stratified) and sampling size for importing data into Data Wrangler.

Click Import. The prepare page will be loaded, allowing you to add various transformations and essential analysis to the dataset.

Navigate to DataFlow from the top screen and add more steps to the flow as needed for transformations and analysis. You can run a data insight report to identify data quality issues and get recommendations to fix those issues. Let’s look at some example transforms.

Go to your dataflow, and this is the screen that you should see. It shows us that we are using EMR as a data source using the Presto connector.

Let’s click on the + button to the right of Data types and select Add transform. When you do that, the following screen should pop up:

Let’s explore the data. We see that it has multiple features such as iata_code, airport, city, state, country, latitude, and longitude. We can see that the entire dataset is based in one country, which is the US, and there are missing values in Latitude and Longitude. Missing data can cause bias in the estimation of parameters, and it can reduce the representativeness of the samples, so we need to perform some imputation and handle missing values in our dataset.

Let’s click on the Add Step button on the navigation bar to the right. Select Handle missing. The configurations can be seen in the following screenshots. Under Transform, select Impute. Select the column type as Numeric and column names Latitude and Longitude. We will be imputing the missing values using an approximate median value. Preview and add the transform.

Let us now look at another example transform. When building a machine learning model, columns are removed if they are redundant or don’t help your model. The most common way to remove a column is to drop it. In our dataset, the feature country can be dropped since the dataset is specifically for US airport data. Let’s see how we can manage columns. Let’s click on the Add step button on the navigation bar to the right. Select Manage columns. The configurations can be seen in the following screenshots. Under Transform, select Drop column, and under Columns to drop, select Country.

You can continue adding steps based on the different transformations required for your dataset. Let us go back to our data flow. You will now see two more blocks showing the transforms that we performed. In our scenario, you can see Impute and Drop column.

ML practitioners spend a lot of time crafting feature engineering code, applying it to their initial datasets, training models on the engineered datasets, and evaluating model accuracy. Given the experimental nature of this work, even the smallest project will lead to multiple iterations. The same feature engineering code is often run again and again, wasting time and compute resources on repeating the same operations. In large organizations, this can cause an even greater loss of productivity because different teams often run identical jobs or even write duplicate feature engineering code because they have no knowledge of prior work. To avoid the reprocessing of features, we will now export our transformed features to Amazon Feature Store. Let’s click on the + button to the right of Drop column. Select Export to and choose Sagemaker Feature Store (via Jupyter notebook).

You can easily export your generated features to SageMaker Feature Store by selecting it as the destination. You can save the features into an existing feature group or create a new one.

We have now created features with Data Wrangler and easily stored those features in Feature Store. We showed an example workflow for feature engineering in the Data Wrangler UI. Then we saved those features into Feature Store directly from Data Wrangler by creating a new feature group. Finally, we ran a processing job to ingest those features into Feature Store. Data Wrangler and Feature Store together helped us build automatic and repeatable processes to streamline our data preparation tasks with minimum coding required. Data Wrangler also provides us flexibility to automate the same data preparation flow using scheduled jobs. We can also automate training or feature engineering with SageMaker Pipelines (via Jupyter Notebook) and deploy to the Inference endpoint with SageMaker inference pipeline (via Jupyter Notebook).

Clean up

If your work with Data Wrangler is complete, select the stack created from the CloudFormation page and delete it to avoid incurring additional fees.

Conclusion

In this post, we went over how to set up Amazon EMR as a data source in Data Wrangler, how to transform and analyze a dataset, and how to export the results to a data flow for use in a Jupyter notebook. After visualizing our dataset using Data Wrangler’s built-in analytical features, we further enhanced our data flow. The fact that we created a data preparation pipeline without writing a single line of code is significant.

To get started with Data Wrangler, see Prepare ML Data with Amazon SageMaker Data Wrangler, and see the latest information on the Data Wrangler product page.


About the authors

Ajjay Govindaram is a Senior Solutions Architect at AWS. He works with strategic customers who are using AI/ML to solve complex business problems. His experience lies in providing technical direction as well as design assistance for modest to large-scale AI/ML application deployments. His knowledge ranges from application architecture to big data, analytics, and machine learning. He enjoys listening to music while resting, experiencing the outdoors, and spending time with his loved ones.

Isha Dua is a Senior Solutions Architect based in the San Francisco Bay Area. She helps AWS enterprise customers grow by understanding their goals and challenges, and guides them on how they can architect their applications in a cloud-native manner while making sure they are resilient and scalable. She’s passionate about machine learning technologies and environmental sustainability.

Rui Jiang is a Software Development Engineer at AWS based in the New York City area. She is a member of the SageMaker Data Wrangler team helping develop engineering solutions for AWS enterprise customers to achieve their business needs. Outside of work, she enjoys exploring new foods, life fitness, outdoor activities, and traveling.

Read More