New way to annotate training data should enable more sophisticated Alexa interactions

Developing a new Alexa skill typically means training a machine-learning system with annotated data, and the skill’s ability to “understand” natural-language requests is limited by the expressivity of the semantic representation used to do the annotation. So far, the techniques used to represent natural language have been fairly simple, so Alexa has been able to handle only relatively simple requests.Read More

Amazon Scientist Outlines Multilayer System For Smart Speaker Echo Cancellation And Voice Enhancement

Smart speakers, such as the Amazon Echo family of products, are growing in popularity among consumer and business audiences. In order to improve the automatic speech recognition (ASR) and full-duplex voice communication (FDVC) performance of these smart speakers, acoustical echo cancellation (AEC) and noise reduction systems are required. These systems reduce the noises and echoes that can impact operation, such as an Echo device accurately hearing the wake word “Alexa.”Read More

Amazon and University of Sheffield researchers make large-scale fact extraction and verification dataset publicly available

In recent years, the amount of textual information produced daily has increased exponentially. This information explosion has been accelerated by the ease with which data can be shared across the web. Most of the textual information is generated as free-form text, and only a small fraction is available in structured format (Wikidata, Freebase etc.) that can be processed and analyzed directly by machines.Read More

Alexa scientists present two new techniques that improve wake word performance

The Amazon Echo is a hands-free smart home speaker you control with your voice. The first important step in enabling a delightful customer experience with an Echo or other Alexa-enabled device is wake word detection, so accurate detection of “Alexa” or substitute wake words is critical. It is challenging to build a wake word system with low error rates when there are limited computation resources on the device and it’s in the presence of background noise such as speech or music.Read More