Quadruped robot learning locomotion skills by imitating a dog.
Whether it’s a dog chasing after a ball, or a monkey swinging through the
trees, animals can effortlessly perform an incredibly rich repertoire of agile
locomotion skills. But designing controllers that enable legged robots to
replicate these agile behaviors can be a very challenging task. The superior
agility seen in animals, as compared to robots, might lead one to wonder: can
we create more agile robotic controllers with less effort by directly imitating
animals?
In this work, we present a framework for learning robotic locomotion skills by
imitating animals. Given a reference motion clip recorded from an animal (e.g.
a dog), our framework uses reinforcement learning to train a control policy
that enables a robot to imitate the motion in the real world. Then, by simply
providing the system with different reference motions, we are able to train a
quadruped robot to perform a diverse set of agile behaviors, ranging from fast
walking gaits to dynamic hops and turns. The policies are trained primarily in
simulation, and then transferred to the real world using a latent space
adaptation technique, which is able to efficiently adapt a policy using only a
few minutes of data from the real robot.