Humans manipulate 2D deformable structures such as fabric on a daily basis,
from putting on clothes to making beds. Can robots learn to perform similar
tasks? Successful approaches can advance applications such as dressing
assistance for senior care, folding of laundry, fabric upholstery, bed-making,
manufacturing, and other tasks. Fabric manipulation is challenging, however,
because of the difficulty in modeling system states and dynamics, meaning that
when a robot manipulates fabric, it is hard to predict the fabric’s resulting
state or visual appearance.
In this blog post, we review four recent papers from two research labs (Pieter
Abbeel’s and Ken Goldberg’s) at Berkeley AI Research (BAIR) that
investigate the following hypothesis: is it possible to employ learning-based
approaches to the problem of fabric manipulation?
We demonstrate promising results in support of this hypothesis by using a
variety of learning-based methods with fabric simulators to train smoothing
(and even folding) policies in simulation. We then perform sim-to-real transfer
to deploy the policies on physical robots. Examples of the learned policies in
action are shown in the GIFs above.
We show that deep model-free methods trained from exploration or from
demonstrations work reasonably well for specific tasks like smoothing, but it
is unclear how well they generalize to related tasks such as folding. On the
other hand, we show that deep model-based methods have more potential for
generalization to a variety of tasks, provided that the learned models are
sufficiently accurate. In the rest of this post, we summarize the papers,
emphasizing the techniques and tradeoffs in each approach.