Our brain has an amazing ability to process visual information. We can take one glance at a complex scene, and within milliseconds be able to parse it into objects and their attributes, like colour or size, and use this information to describe the scene in simple language. Underlying this seemingly effortless ability is a complex computation performed by our visual cortex, which involves taking millions of neural impulses transmitted from the retina and transforming them into a more meaningful form that can be mapped to the simple language description. In order to fully understand how this process works in the brain, we need to figure out both how the semantically meaningful information is represented in the firing of neurons at the end of the visual processing hierarchy, and how such a representation may be learnt from largely untaught experience.Read More
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
Our brain has an amazing ability to process visual information. We can take one glance at a complex scene, and within milliseconds be able to parse it into objects and their attributes, like colour or size, and use this information to describe the scene in simple language. Underlying this seemingly effortless ability is a complex computation performed by our visual cortex, which involves taking millions of neural impulses transmitted from the retina and transforming them into a more meaningful form that can be mapped to the simple language description. In order to fully understand how this process works in the brain, we need to figure out both how the semantically meaningful information is represented in the firing of neurons at the end of the visual processing hierarchy, and how such a representation may be learnt from largely untaught experience.Read More
Real-world challenges for AGI
When people picture a world with artificial general intelligence (AGI), robots are more likely to come to mind than enabling solutions to society’s most intractable problems. But I believe the latter is much closer to the truth. AI is already enabling huge leaps in tackling fundamental challenges: from solving protein folding to predicting accurate weather patterns, scientists are increasingly using AI to deduce the rules and principles that underpin highly complex real-world domains – ones they might never have discovered unaided. Advances in AGI research will supercharge society’s ability to tackle and manage climate change – not least because of its urgency but also due to its complex and multifaceted nature.Read More
Real-World Challenges for AGI
Koray Kavukcuoglu, VP of Research, discusses why addressing real-world challenges now helps advance the development of true AGI.Read More
Opening up a physics simulator for robotics
When you walk, your feet make contact with the ground. When you write, your fingers make contact with the pen. Physical contacts are what makes interaction with the world possible. Yet, for such a common occurrence, contact is a surprisingly complex phenomenon. Taking place at microscopic scales at the interface of two bodies, contacts can be soft or stiff, bouncy or spongy, slippery or sticky. It’s no wonder our fingertips have four different types of touch-sensors. This subtle complexity makes simulating physical contact — a vital component of robotics research — a tricky task.Read More
Opening up a physics simulator for robotics
As part of DeepMind’s mission of advancing science, we have acquired the MuJoCo physics simulator and are making it freely available for everyone, to support research everywhere.Read More
Stacking our way to more general robots
Picking up a stick and balancing it atop a log or stacking a pebble on a stone may seem like simple — and quite similar — actions for a person. However, most robots struggle with handling more than one such task at a time. Manipulating a stick requires a different set of behaviours than stacking stones, never mind piling various dishes on top of one another or assembling furniture. Before we can teach robots how to perform these kinds of tasks, they first need to learn how to interact with a far greater range of objects. As part of DeepMind’s mission and as a step toward making more generalisable and useful robots, we’re exploring how to enable robots to better understand the interactions of objects with diverse geometries.Read More
Stacking our way to more general robots
Introducing RGB-Stacking as a new benchmark for vision-based robotic manipulation.Read More
Predicting gene expression with AI
When the Human Genome Project succeeded in mapping the DNA sequence of the human genome, the international research community were excited by the opportunity to better understand the genetic instructions that influence human health and development. DNA carries the genetic information that determines everything from eye colour to susceptibility to certain diseases and disorders. The roughly 20,000 sections of DNA in the human body known as genes contain instructions about the amino acid sequence of proteins, which perform numerous essential functions in our cells. Yet these genes make up less than 2% of the genome. The remaining base pairs — which account for 98% of the 3 billion “letters” in the genome — are called “non-coding” and contain less well-understood instructions about when and where genes should be produced or expressed in the human body. At DeepMind, we believe that AI can unlock a deeper understanding of such complex domains, accelerating scientific progress and offering potential benefits to human health.Read More
Predicting gene expression with AI
Our new Enformer architecture advances genetic research by improving the ability to predict how DNA sequence influences gene expression.Read More