AI-powered microgrids facilitate energy resilience and equity in regional communities

AI-powered microgrids facilitate energy resilience and equity in regional communities

Three icons that represent (left to right) ecology and environment, economics, and technology for emerging markets.

The rise of affordable small-scale renewable energy, like rooftop solar panels, is reshaping energy systems around the world. This shift away from fossil fuel-powered grids creates new opportunities for energy distribution that prioritize decentralized energy ownership and community empowerment. Despite this progress, centralized energy systems still dominate, often failing to provide vulnerable communities with reliable, affordable renewable energy. In response, Microsoft researchers are collaborating with local communities to explore how AI can enable community-scale energy solutions focused on energy availability and equity as well as decarbonization.

AI-powered microgrids support resilient communities

Microgrids, small and localized energy systems, hold promise as a solution to the challenges of centralized energy systems. These microgrids can operate independently from the larger grid, providing participants with resilience and control. Figure 1 shows how these systems integrate renewable energy sources and storage to efficiently manage local energy needs.

Figure 1: The image shows a microgrid system with interconnected assets, including rooftop solar panels, battery storage locations, electric vehicle chargers, wind turbines, and large solar farms, all supporting a small community and tied to the central power grid.
Figure 1. An example of the decentralized nature of a microgrid power system

AI improves energy reliability by integrating data about energy consumption, market prices, and weather forecasts, necessary when using wind and solar power, which rely on weather conditions. Advanced forecasting predicts renewable energy availability, while AI-driven analytics determine when to generate, store, or sell electricity. This increases efficiency and stabilizes the grid by balancing supply and demand.

When powered by AI, microgrids can also contribute to energy equity. In many rural parts of the US, flat-rate billing models are still common, often leading to unfair pricing. AI-enabled microgrids provide an alternative by allowing communities to pay only for the energy they use. By analyzing consumption patterns, AI can ensure optimized distribution that promotes equitable pricing and access. These systems also improve resilience during crises, enabling communities to manage energy distribution more effectively and reduce reliance on centralized utilities. AI allows microgrids to predict energy demands, identify system vulnerabilities, and recover quickly during outages.

Evaluating AI’s impact on microgrid efficiency and equity

To explore AI’s potential in improving efficiency and equity in energy management, a team of Microsoft researchers collaborated with community organizations on simulations and a case study. They built a tabletop simulator to test whether AI could effectively determine when to generate, store, or sell electricity based on real-time data. The AI model was optimized for resilience and efficiency, using reinforcement learning to control grid and battery processes, enabling microgrids adapt to changing energy conditions and market dynamics.

This simulation used a theoretical model with external data to show how an AI-driven microgrid could autonomously buy and sell energy based on strategic design parameters. By controlling when the battery is charged and discharged based on energy production and consumption patterns, the model maximized efficiency and maintained local power availability. Figure 2 shows the AI-controlled grid’s optimal decisions using open-source data from the California Independent System Operator (CAISO), serving as a proof of concept (PoC) for AI-driven microgrids operating under real-world conditions.

Figure 2 (A): Graph depicting peak and off-peak net power bought or sold over one week using simulations of the AI controller on historical CAISO data. The graph shows a direct correlation that when solar is available then more power is bought than sold, whereas, during nighttime the controller relies on stored energy in battery to power consumption, making fewer transactions  

Figure 2 (B) The graph shows battery levels on a simulated AI controller for the historical CAISO data. During peak hours, the battery discharges as reserves are sold, while solar power supplies the load. At night, the battery conserves power, minimizing purchases and optimizing reserves for daytime selling.
Figure 2. (A) Peak and off-peak net power bought or sold over one week using simulations of the AI controller on historical CAISO data. (B) Peak and off-peak battery levels over one week using simulations of the AI controller on historical CAISO data. 

Case study: AI-powered microgrid for community energy transition

Microsoft researchers, in partnership with community-based organizations Remix: The Soul of Innovation (opens in new tab), Maverick IQ (opens in new tab) and Ayika Solutions (opens in new tab), are designing and implementing an AI-powered microgrid system in West Atlanta. Working closely with the Vicars Community Center (VCC) resilience hub (opens in new tab), they aim to address challenges faced by the community due to rapid development. West Atlanta, like many Atlanta neighborhoods, faces rising housing prices and energy costs that disproportionately affect long-time residents. Communities relying on centralized grids are more vulnerable to outages, with slow recovery times, highlighting systemic inequalities in energy distribution.

The VCC resilience hub is tackling these issues by helping to establish a solar microgrid for the West Atlanta Watershed Alliance (opens in new tab) (WAWA) community farm and surrounding neighborhoods. Microsoft researchers and collaborators are integrating AI into the microgrid to achieve energy savings, improve resilience, and create local job opportunities. Figure 3 shows the VCC resilience hub and WAWA community farm powered by the microgrid, highlighting key infrastructure for installing distributed energy resources (DERs).

Figure 3 (A) and 3 (B)  shows pictures of the VCC resilience hub, with solar panels  and batteries for energy storage 

 

Figure 3 (C) and 3 (D) shows pictures of the community farm, and volunteers at WAWA, a key center to support the future of community agriculture to be supported by the microgrid
Figure 3. A and B show the VCC resilience hub, with solar panels (left) and batteries for energy storage (right) – photographs by Erica Holloman-Hill. C and D show the WAWA community farm and community members holding freshly harvested crops. 

Project phases

Co-innovation design

Microsoft researchers, architects, and community partners held a participatory design session with state and utility representatives to define the project’s mission and key metrics. The CDC’s Social Vulnerability Index informed the site selection, supporting the project’s diversity, equity, and inclusion goals. 

Renewables and microgrid siting

A renewable siting survey conducted by community partners identified the VCC as a key resilience hub for solar panel and battery installation.

To deliver these benefits, the site first needed upgrades. Older homes required energy-efficiency improvements, such as electrical upgrades and better insulation, before they could be integrated into the microgrid. As a PoC, the team collaborated with community partners to modernize an older home with inefficient energy consumption. Sensors were installed to track energy usage and environmental conditions (Figure 4).

Figure 4: A graph showing estimated cost of electricity per day based on a legacy household in West Atlanta through kilowatt-hour usage between July 29, 2024 and August 13, 2023. Data validates the family’s experience about high energy bills, inefficient heating and cooling, and high humidity in the basement.
Figure 4. Estimated daily electricity costs based on a home’s kilowatt-hour usage between July 29 and August 13, 2023. The data confirms the residents’ experience of high energy bills, inefficient heating and cooling, and high humidity in the basement. Used by permission from Erica Holloman-Hill.

Students from Morehouse College (opens in new tab) used this data to create a digital twin of the home, which provided actionable insights (Figure 5). The analysis confirmed issues like high radon levels and energy drains from outdated appliances. Guided by these findings, the team upgraded the house into a “smart home” where AI monitors energy and environmental conditions, enabling it to join the microgrid and making it eligible for LEED certification (opens in new tab).

Figure 5: 2 Figures showing snapshots of digital twin created for Dr. Erica Holloman-Hill’s home, provided by courtesy of Dr. Erica L Holloman-Hill, owner of Ayika Solutions Inc. The first figure shows the sensor readings of pollutants and weather in various parts of the home. The second figure shows the measurements in detail for the  basement. The detailed environmental data—including climatic conditions, appliance-level energy usage, and pollutant levels—provide actionable insights for identifying targeted areas for grid modernization.
Figure 5. Smart electrification: Snapshots of digital twin created for the PoC home. Panel A shows the digital twin for the entire home. Panel B shows detailed views for the first floor and basement, respectively. The detailed environmental data—including climatic conditions, appliance-level energy usage, and pollutant levels—provide actionable insights for identifying targeted areas for grid modernization. Used by permission from Erica Holloman-Hill.

Microgrid simulation phase

To prepare the AI-powered microgrid, Microsoft researchers built a simplified tabletop prototype simulating the setup using real data from the design and siting phases. This prototype demonstrated the control mechanism’s ability to manage DERs—solar panels, batteries, and appliances—and the interface between the microgrid and the larger grid. Figure 6 shows the tabletop model during prototyping.

Figure 7 illustrates the results of this simulation, showing power bought and sold and the battery charge-discharge profile. The AI controller made optimal buying and selling decisions, promoting efficiency and reliability.

Figure 6 (A): Graph depicting peak and off-peak net power bought or sold over one week using simulations of the AI controller on data generated during runs of tabletop microgrid model. The graph shows a direct correlation that when solar is available then more power is bought than sold, whereas, during night time the controller relies on stored energy in battery to power consumption, making fewer transactions. 

Figure 6 (B) The graph shows battery levels on a simulated microgrid controller powered by AI. During peak hours, the battery discharges as reserves are sold, while solar power supplies the load. At night, the battery conserves power, minimizing purchases and optimizing reserves for daytime selling.
Figure 7. (A) Peak and off-peak net power bought or sold over one week using AI-controller simulations. (B) Corresponding battery levels.

Erica Holloman-Hill, director of WAWA, CEO of Ayika Solutions and owner of the PoC home, reflected: “This study helped me understand how our home’s outdated condition affects our quality of life. Upgrading homes like mine could make a significant difference. Thanks to partnerships like this one, controlling and sharing the electricity the community generates is within reach, highlighting the potential of AI-supported technologies like microgrids for communities like ours.”

Building on the simulation’s success, the VCC resilience hub and local organizations are continuing to install solar panels to power the microgrid. AI will play a key role in siting and controlling the system as it expands. Efforts are also underway to establish sustainable financing models and assess homes for modernization to enable broader participation in the microgrid.

AI: A path to equity and resilience

The transition to decentralized microgrids offers new opportunities for energy efficiency, with AI playing a critical role in managing these systems. Yet additional efforts are needed for communities to fully realize these benefits. Residents of aging homes are burdened with outdated wiring, inefficient appliances, and poor insulation—factors that drive up energy costs. Their dependence on centralized grids offers little relief, underscoring the need for community-focused energy solutions. 

The West Atlanta project illustrates AI’s potential to create resilient, equitable, community-driven energy systems, paving the way for a more inclusive and sustainable future. Microsoft researchers are continuing to collaborate with local organizations to promote smarter energy management.

For additional details, please review the project report.

Acknowledgements

I would like to thank all the collaborators on these projects: West Atlanta microgrid: Erica L. Holloman-Hill, John Jordan Jr, Markese Bryant. I also want to thank Karin Strauss for reviewing and providing feedback on this blog post; Andalib Samandari, the intern who supported this project; Vaishnavi Ranganathan for helping to brainstorm throughout the project; AI & Society Fellows program for supporting projects in this domain; and Microsoft’s Datacenter Community Affairs team, Jon McKenley and Kelly Lanier Arnold for supporting the project in West Atlanta. 

The post AI-powered microgrids facilitate energy resilience and equity in regional communities appeared first on Microsoft Research.

Read More

Introducing DRIFT Search: Combining global and local search methods to improve quality and efficiency

Introducing DRIFT Search: Combining global and local search methods to improve quality and efficiency

Three icons that represent local and global search and GraphRAG. These icons sit on a blue to pink gradient.

GraphRAG is a technique that uses large language models (LLMs) to create knowledge graphs and summaries from unstructured text documents and leverages them to improve retrieval-augmented generation (RAG) operations on private datasets. It offers comprehensive global overviews of large, private troves of unstructured text documents while also enabling exploration of detailed, localized information. By using LLMs to create comprehensive knowledge graphs that connect and describe entities and relationships contained in those documents, GraphRAG leverages semantic structuring of the data to generate responses to a wide variety of complex user queries. Uncharted (opens in new tab), one of Microsoft’s research collaborators, has recently been expanding the frontiers of this technology by developing a new approach to processing local queries: DRIFT search (Dynamic Reasoning and Inference with Flexible Traversal). This approach builds upon Microsoft’s GraphRAG technique, combining characteristics of both global and local search to generate detailed responses in a method that balances computational costs with quality outcomes.

How GraphRAG works

GraphRAG has two primary components, an indexing engine and a query engine.

The indexing engine breaks down documents into smaller chunks, converting them into a knowledge graph with entities and relationships. It then identifies communities within the graph and generates summaries—or “community reports”—that represent the global data structure. 

The query engine utilizes LLMs to build graph indexes over unstructured text and query them in two primary modes: 

  • Global search handles queries that span the entire dataset. This mode synthesizes information from diverse underlying sources to answer questions that require a broad understanding of the whole corpus. For example, in a dataset about tech company research efforts, a global query could be: “What trends in AI research have emerged over the past five years across multiple organizations?” While effective for connecting scattered information, global search can be resource intensive. 
  • Local search optimizes for targeted queries, drawing from a smaller subset of documents that closely match the user’s input. This mode works best when the answer lies within a small number of text units. E.g. a query asking: “What new features and integrations did Microsoft’s Cosmos DB team release on October 4th?”

The creation of these summaries often involves a human in the loop (HITL), as user input shapes how information is summarized (e.g., what kinds of entities and relationships are extracted). To index documents using GraphRAG, a clear description of the intended user persona (as defined in the indexing phase) is needed, as it influences how nodes, edges, and community reports are structured.

Introducing DRIFT Search

DRIFT Search introduces a new approach to local search queries by including community information in the search process. This greatly expands the breadth of the query’s starting point and leads to retrieval and usage of a far higher variety of facts in the final answer. This addition expands the GraphRAG query engine by providing a more comprehensive option for local search, which uses community insights to refine a query into detailed follow-up questions. These follow-ups allow DRIFT to handle queries that may not fully align with the original extraction templates defined by the user at index time.

Answer details Drift (DS_Default) Local (LS)
Supply Chain Traced back to cinnamon in Ecuador and Sri Lanka
[Redacted Brand] and [Redacted Brand] Brands Impacted
Products sold at [Redacted Brand] and [Redacted Brand]
Plants in Ecuador
Contamination Levels 2000 times higher than FDA max Blood lead levels ranging from 4 to 29 micrograms per deciliter
Actions Recalls and health advisories
Investigating plant in Ecuador
Issued warnings to retailers
Recalls and health advisories
Table 1: An example of summarized responses from two search techniques (DRIFT and Local Search) on a dataset of AP News articles to the query: “Describe what actions are being taken by the U.S. Food and Drug Administration and the Centers for Disease Control and Prevention to address the lead contamination in apple cinnamon fruit puree and applesauce pouches in the United States during November 2023”. As shown in the table, DRIFT search was able to surface details not immediately available with the two other approaches.

Spotlight: Blog post

MedFuzz: Exploring the robustness of LLMs on medical challenge problems

Medfuzz tests LLMs by breaking benchmark assumptions, exposing vulnerabilities to bolster real-world accuracy.


DRIFT Search: A step-by-step process 

  1. Primer: When a user submits a query, DRIFT compares it to the top K most semantically relevant community reports. This generates an initial answer along with several follow-up questions, which act as a lighter version of global search. To do this, we expand the query using Hypothetical Document Embeddings (HyDE), to increase sensitivity (recall), embed the query, look up the query against all community reports, select the top K and then use the top K to try to answer the query. The aim is to leverage high-level abstractions to guide further exploration.
  2. Follow-Up: With the primer in place, DRIFT executes each follow-up using a local search variant. This yields additional intermediate answers and follow-up questions, creating a loop of refinement that continues until the search engine meets its termination criteria, which is currently configured for two iterations (further research will investigate reward functions to guide terminations). This phase represents a globally informed query refinement. Using global data structures, DRIFT navigates toward specific, relevant information within the knowledge graph even when the initial query diverges from the indexing persona. This follow-up process enables DRIFT to adjust its approach based on emerging information. 
  3. Output Hierarchy: The final output is a hierarchy of questions and answers ranked on their relevance to the original query. This hierarchical structure can be customized to fit specific user needs. During benchmark testing, a naive map-reduce approach aggregated all intermediate answers, with each answer weighted equally. 
An image that shows a hierarchical tree with each node represented as a pie chart of weighting.
Figure 1. An entire DRIFT search hierarchy highlighting the three core phases of the DRIFT search process. A (Primer): DRIFT compares the user’s query with the top K most semantically relevant community reports, generating a broad initial answer and follow-up questions to steer further exploration. B (Follow-Up): DRIFT uses local search to refine queries, producing additional intermediate answers and follow-up questions that enhance specificity, guiding the engine towards context-rich information. A glyph on each node in the diagram shows the confidence the algorithm has to continue the query expansion step.  C (Output Hierarchy): The final output is a hierarchical structure of questions and answers ranked by relevance, reflecting a balanced mix of global insights and local refinements, making the results adaptable and comprehensive.

Why DRIFT search is effective

DRIFT search excels by dynamically combining global insights with local refinement, enabling navigation from high-level summaries down to original text chunks within the knowledge graph. This layered approach ensures that detailed, context-rich information is preserved even when the initial query diverges from the persona used during indexing. By decomposing broad questions into fine-grained follow-ups, DRIFT captures granular details and adjusts based on the emerging context, making it adaptable to diverse query types. This makes it particularly effective when handling queries that require both breadth and depth without losing specific details.

Benchmarking DRIFT search

As shown, we tested the effectiveness of DRIFT search by performing a comparative analysis across a variety of use cases against GraphRAG local search and a highly tuned variant of semantic search methods. The analysis evaluated each method’s performance based on key metrics such as:  

  • Comprehensiveness: Does the response answer all aspects of the question?
  • Diversity of responses: Does the response provide different perspectives and insights on the question?

In our results, DRIFT search provided significantly better results on both comprehensiveness and diversity in the metrics. We set up an experiment where we ingested 5K+ news articles from the Associated Press and ingested those articles using GraphRAG. After ingestion, we generated 50 “local” questions on this dataset and used both DRIFT and Local Search to generate answers for each of these questions. These “local” questions were questions that target specific details in the dataset that could be attributed to a small number of text units containing the answer. These answers were then used with an LLM judge to score for comprehensiveness and diversity.

  • On comprehensiveness, DRIFT search outperformed Local Search 78% of the time.
  • On diversity, DRIFT search outperformed Local Search 81% of the time.

Availability

DRIFT search is available now on the GraphRAG GitHub (opens in new tab).

Future research directions

A future version of DRIFT will incorporate an improved version of Global Search that will allow it to more directly address questions currently serviced best by global search. The hope is to then move towards a single query interface that can service questions of both local and global varieties. This work will further evolve DRIFT’s termination logic, potentially through a reward model that balances novel information with redundancy. Additionally, executing follow-up queries using either global or local search modes could improve efficiency. Some queries require broader data access, which can be achieved by leveraging a query router and a lite-global search variant that uses fewer community reports, tokens, and overall resources.

DRIFT search is the first of several major optimizations to GraphRAG that are being explored.  It shows how a global index can even benefit local queries. In our future work, we plan to explore more approaches to bring greater efficiency to the system by leveraging the knowledge graph that GraphRAG creates.

The post Introducing DRIFT Search: Combining global and local search methods to improve quality and efficiency appeared first on Microsoft Research.

Read More

Intern Insights: Vaishnavi Ranganathan with Angela Busheska

Intern Insights: Vaishnavi Ranganathan with Angela Busheska

Outline illustrations of Angela Busheska, an undergraduate engineering student at Lafayette College and Vaishnavi Ranganathan, a Senior Researcher at Microsoft.

Every year, interns from academic institutions around the world apply and grow their knowledge as members of the research community at Microsoft. In this Microsoft Research Podcast series, these students join their internship supervisors to share their experience working alongside some of the leading researchers in their respective fields. 

In this episode, Angela Busheska, an undergraduate engineering student at Lafayette College, talks to Senior Researcher Vaishnavi Ranganathan about her work on TerraTrace, a platform that brings together statistics and large language models to track land use over time for agricultural and forestry applications. Busheska discusses the personal loss that drew her to climate activism, the chain of events that led to a memorable face-to-face meeting with Microsoft’s chief sustainability officer, and her advice for going after the internship you want and making the experience count. 

Angela Busheska standing to the left of the Microsoft sign on the Microsoft campus in Redmond, Washington.
Angela Busheska, pictured on the Microsoft campus in Redmond, Washington, was a part of the Microsoft Research Undergraduate Research Intern Program. During her time in the internship program, she helped develop a platform for tracking land use across time for agricultural and forestry applications. 
Angela Busheska and Melanie Nakagawa standing in front of a fence
During her internship, Busheska met with Microsoft Chief Sustainability Officer Melanie Nakagawa at the Bloomberg Green Festival in Seattle and spoke with the Microsoft executive about her sustainability work. 

[1] (opens in new tab) For more information, see “Regulation on Deforestation-free products” on the European Commission website (opens in new tab).

The post Intern Insights: Vaishnavi Ranganathan with Angela Busheska appeared first on Microsoft Research.

Read More

Research Focus: Week of October 7, 2024

Research Focus: Week of October 7, 2024

Welcome to Research Focus, a series of blog posts that highlights notable publications, events, code/datasets, new hires and other milestones from across the research community at Microsoft.

Research Focus | October 7, 2024

Securely Training Decision Trees Efficiently

In a recent paper: Securely Training Decision Trees Efficiently that will appear at ACM CCS 2024, researchers from Microsoft significantly reduce the communication complexity of secure decision tree training. Decision trees are an important class of supervised learning algorithms. In this approach, a classification or regression tree is built based on a set of features or attributes present in the training dataset. As with many learning algorithms, the accuracy of decision trees can be greatly improved with larger volumes of data. However, this can be a challenge, since data may come from multiple independent sources and require attention to data privacy concerns. In this case, the use of a privacy-enhancing technology, such as secure multi-party computation (MPC), can help protect the underlying training data.  

When the number of elements in the dataset is 𝑁, the number of attributes is 𝑚 and the height of the tree to be built is ℎ, the researchers construct a protocol with communication complexity O(𝑚𝑁 log 𝑁 + ℎ𝑚𝑁 + ℎ𝑁 log 𝑁 ), thereby achieving an improvement of ≈ min(ℎ, 𝑚, log 𝑁 ) over the previous state of the art. The essential feature is an improved protocol to regroup sorted private elements further into additional groups (according to a flag vector) while maintaining their relative ordering. Implementing this protocol in the MP-SPDZ framework shows that it requires 10× lesser communication and is 9× faster than existing approaches.


Multi-label audio classification with a noisy zero-shot teacher

Improving the real-world accuracy of audio content detection (ACD) is an important problem for streaming platforms, operating systems and playback devices. It’s similar to audio tagging, i.e., labeling sounds present in a given audio segment of several seconds length or longer. However, ACD may consist of a small number of higher-level labels or super-classes, e.g. speech, music, traffic, machines, animals, etc., where each label can include a multitude of specific sounds.

In a recent paper: Multi-label audio classification with a noisy zero-shot teacher, researchers from Microsoft propose a novel training scheme using self-label correction and data augmentation methods to deal with noisy labels and improve real-world accuracy on a polyphonic audio content detection task. The augmentation method reduces label noise by mixing multiple audio clips and joining their labels, while being compatible with multiple active labels. The researchers show that performance can be improved by a self-label correction method using the same pretrained model. They also show that it is feasible to use a strong zero-shot model such as CLAP to generate labels for unlabeled data and improve the results using the proposed training and label enhancement methods. The resulting model performs similar to CLAP while providing an efficient mobile device friendly architecture which can be quickly adapted to unlabeled sound classes. 


Tabularis Revilio: Converting Text to Tables

Tables are commonly used to store and present data. These tables are often moved as free-form text when copied from documents and applications without proper tabular support like PDF documents, web pages, or images. Users are dependent on manual effort or programming abilities to parse this free-form text back into structured tables.

In a recent paper: Tabularis Revilio: Converting Text to Tables, researchers from Microsoft present a novel neurosymbolic system for reconstructing tables when their column boundaries have been lost. Revilio addresses this task by detecting headers, generating an initial table sketch using a large language model (LLM), and using that sketch as a guiding representation during an enumerate-and-test strategy that evaluates syntactic and semantic table structures. Revilio was evaluated on a diverse set of datasets, demonstrating significant improvements over existing table parsing methods. Revilio outperforms traditional techniques in both accuracy and scalability, handling large tables with over 100,000 rows. The researchers’ experiments using publicly available datasets show an increase in reconstruction accuracy by 5.8–11.3% over both neural and symbolic baseline state-of-the-art systems. 

on-demand event

Microsoft Research Forum Episode 4

Learn about the latest multimodal AI models, advanced benchmarks for AI evaluation and model self-improvement, and an entirely new kind of computer for AI inference and hard optimization.


Confidential Container Groups: Implementing Confidential Computing on Azure Container Instances

Container-based technologies empower cloud tenants to develop highly portable software and deploy services in the cloud at a rapid pace. Cloud privacy, meanwhile, is important as a large number of container deployments operate on privacy-sensitive data, but challenging due to the increasing frequency and sophistication of attacks. State-of-the-art confidential container-based designs leverage process-based trusted execution environments (TEEs), but face security and compatibility issues that limit their practical deployment.

In a recent article in Communications of the ACM: Confidential Container Groups: Implementing Confidential Computing on Azure Container Instances (opens in new tab), researchers from Microsoft with external colleagues present the Parma architecture, which provides lift-and-shift deployment of unmodified containers while providing strong security protection against a powerful attacker who controls the untrusted host and hypervisor. Parma leverages VM-level isolation to execute a container group within a unique VM-based TEE. Besides container integrity and user data confidentiality and integrity, Parma also offers container attestation and execution integrity based on an attested execution policy. This policy, which is specified by the customer, delimits the actions that the cloud service provider is allowed to take on their behalf when managing the container group. 

The result is that customers receive the security protections of TEEs for their container workloads with minimal costs to perfromance. To learn more, check out Confidential Containers on Azure Container Instances (opens in new tab), which is based on Microsoft’s Parma architecture. 


AI for Business Transformation with Peter Lee and Vijay Mital

Generative AI is changing how businesses operate and how stakeholders talk to each other. The building blocks for large scale AI transformation are now in place, but we are only beginning to imagine how it will unfold. Learn what Microsoft research leaders discovered from some early AI innovation in healthcare, and how businesses can prepare for what’s ahead.

In this new three-part video series, Microsoft Research President Peter Lee and Corporate Vice President Vijay Mital discuss how Microsoft is helping businesses navigate this transformation, along with the critical role of data and how emerging multimodal AI models could turbocharge business innovation.


The post Research Focus: Week of October 7, 2024 appeared first on Microsoft Research.

Read More

Data Formulator: Exploring how AI can help analysts create rich data visualizations 

Data Formulator: Exploring how AI can help analysts create rich data visualizations 

white outline icons (representing AI and human computer interaction) on a blue to purple to pink gradient background.

Transforming raw data into meaningful visuals, such as charts, is key to uncovering hidden trends and valuable insights, but even with advances in AI-powered tools, this process remains complex. Integrating AI into the iterative nature of the data visualization process is particularly challenging, as data analysts often struggle to describe complicated tasks in a single text prompt while lacking the direct control of traditional tools. This highlights the need for smarter, more intuitive solutions that combine AI’s precision with the flexibility of hands-on methods.

To address this, we’re excited to release Data Formulator as an open-source research project. This update builds on last year’s release by combining user interface (UI) interactions for designing charts with natural language input for refining details. Unlike the previous version, which required users to choose between two methods, this unified approach allows them to iteratively solve complex tasks and with less effort.

  • Download

    Data Formulator 

    Transform data and create rich visualizations iteratively with AI.

Figure 1: This figure shows the user interface of Data Formulator. There are four callouts in the figure highlighting key components of the user interface. The first call out describes “1. Concept Encoding Shelf: specify charts with field encodings and NL instructions”. The second callout describes “2. (Local) Data Threads: backtrack and revise inputs”. The third describes “3. Data Threads: navigate data derivation history”. The fourth callout contains “4. Data View: inspect original and derived data”. The user interface contains a visualization in the center that shows renewable percentage.
Figure 1. Data Formulator’s UI

Creating and refining charts with the Concept Encoding Shelf and data threads

With Data Formulator, data analysts can now create charts from scratch or select from existing designs through data threads. The UI features a pane called the “Concept Encoding Shelf,” where users can build their chart by dragging various data fields into it and defining them or by creating new ones. A large language model (LLM) on the backend processes this input, generating the necessary code to produce the visual and updating the data threads for future use. This process is illustrated in Figure 2.

Figure 2: This figure shows the user experience workflow in Data Formulator. On the left it shows Data Threads, and the user clicks a line chart that visualizes the renewable percentage of 20 countries and expands it in the main panel. In the middle it shows “Concept Encoding Shelf”, and the user provides an instruction “Show only top 5 CO2 emission countries”. On the right it shows the result produced from running the user instruction with AI: the result is a table with three columns “Year” “Entity” “Renewable Percentage” and int contains only top 5 CO2 countries’ values; a line chart that only contains these five countries trends is also generated. The line chart is added to data threads.
Figure 2. To create a new chart, users can select a previously created chart from the data threads and then use a combination of UI elements and language to describe their intent.

Data threads enable users to review and modify charts they created previously. This iterative process streamlines the editing and refinement process, as the LLM adapts past code to new contexts. Without this feature, users would need to provide more detailed prompts to recreate designs from scratch. This iterative mechanism also allows users to continue updating their charts until they’re satisfied.

Figure 3: This figure illustrates how Data Formulator’s data threads work. On the left side, it shows two data threads, one is the derivation process of electricity produced from each energy source from each country from 2000 to 2020, the other is the thread showing that the user derives the renewable percentage of each country per year followed by a line chart that shows the rankings of these countries. The figure illustrates that each of the plots is backed by a python data transformation code to derive data appropriate to the user instruction. On the right it shows actions users can take in local data threads: (a) the user can click and rerun a previous instruction, (b) the user can provide a new instruction to follow up, (c) the user can click the previous card and revise instruction and rerun.
Figure 3: Data Formulator’s data threads support complex navigation, quick editing, and the rerunning of previous instructions. 

Data Formulator’s framework

Data Formulator’s architecture separates data transformation from chart configuration, improving both the user experience and AI performance. Upon receiving user specifications, the system follows a three-step process: (1) it generates a Vega-Lite script, which defines how data is visualized; (2) it instructs the AI to handle data transformation; and (3) it creates the chart using the converted data, as illustrated in Figure 4.

Figure 4: This figure shows data formulator architecture. The left side shows user’s chart specification with Year on x-axis, rank on y-axis, Entity on color with instruction “rank by renewable percentage”. In the first step, Data Formulator generates a Vega-Lite line chart template with field names. In step 2, Data Formulator compiles a prompt containing “system prompt”, “Context (data fields + sample data + dialog history)” and “Goal (user instruction + expected fields)”, and AI takes this prompt to generate a python code to transform the data. In step 3, Data Formulator combines the data and the Vega-Lite spec to create a line chart that shows ranking of the countries from 2000 to 2020.
Figure 4: Behind the scenes, Data Formulator compiles a Vega-Lite script from the Concept Encoding Shelf (1), prompts the LLM to generate the necessary code for preparation (2), and, upon creating new data, creates the chart (3).

Implications and looking forward

Refining how users interact with AI-powered tools is essential for improving how they communicate their requirements, paving the way for more efficient and effective collaboration. By integrating UI elements and natural language input, we designed Data Formulator to let users to define their visualization needs with precision, leading to better results and reducing the need for multiple clarifications.

While Data Formulator addresses some challenges in data transformation and visualization authoring, others remain. For example, how can AI assist in cleaning unstructured data without losing critical information? And how can it help users define clear data analysis goals when starting with ambiguous or undefined objectives? We’re actively investigating these research questions and invite you to contribute by building on the Data Formulator codebase (opens in new tab).

Learn more about our research efforts on human-AI interaction by exploring how we design dynamic UI widgets (opens in new tab) for visualization editing. You can also view a demo of the Data Formulator project on GitHub Codespace (opens in new tab).

Acknowledgements

We’d like to thank Bongshin Lee, John Thompson, and Gonzalo Ramos for their feedback and contributions to this project. 

The post Data Formulator: Exploring how AI can help analysts create rich data visualizations  appeared first on Microsoft Research.

Read More

Stress-testing biomedical vision models with RadEdit: A synthetic data approach for robust model deployment

Stress-testing biomedical vision models with RadEdit: A synthetic data approach for robust model deployment

This paper has been accepted at the 18th European Conference on Computer Vision (ECCV 2024) (opens in new tab), the premier gathering on computer vision and machine learning.

 On the left is a simple drawing of the lungs. The drawing shows the borders of the left and right lung as well as the trachea and the left and right main stem bronchi. The text under the drawing reads: Original image. To the right of the drawing are the 3 additional inputs of RadEdit. They are arranged vertically. On top there is an example editing prompt. It reads

Biomedical vision models are computational tools that analyze medical images, like X-rays, MRIs, and CT scans, and are used to predict medical conditions and outcomes. These models assist medical practitioners in disease diagnosis, treatment planning, disease monitoring, and risk assessment. However, datasets used to train these models can be small and not representative of real-world conditions, which often leads to these models performing worse in actual medical settings. To avoid misdiagnoses and other errors, these models must be rigorously tested and adjusted to perform reliably across different conditions.

To mitigate the dataset challenge of not having enough diverse data and to improve the testing of biomedical vision models, we developed “RadEdit: Stress-testing biomedical vision models via diffusion image editing,” presented at ECCV 2024. Aligned with the Microsoft Responsible AI principles of reliability and safety, RadEdit helps researchers identify when and how models might fail before they are deployed in a medical setting. RadEdit uses generative image editing to simulate different dataset shifts (e.g., a shift in the patients’ demographics), helping researchers to identify weaknesses in the model. By employing text-to-image diffusion models trained on a wide array of chest X-ray datasets, RadEdit can generate synthetic yet realistic X-rays.

RadEdit’s approach involves using multiple image masks (binary images representing designated regions of a reference image), as illustrated in Figure 1, to limit changes to specific areas of the image, therefore preserving their integrity. It generates synthetic datasets free from spurious correlations and artifacts, addressing shortcomings in existing editing techniques. Traditional editing techniques often overlook biases within the generative model, leading to synthetic data that perpetuate these biases. Alternatively, these other editing techniques restrict edits to the point of unrealistic outputs.

Spotlight: On-demand video

AI Explainer: Foundation models ​and the next era of AI

Explore how the transformer architecture, larger models and more data, and in-context learning have helped advance AI from perception to creation.


How RadEdit works

RadEdit improves biomedical image editing using three key inputs, as illustrated in Figure 1:

  • Text prompt: Defines the desired modifications. For example, a disease can be added with a description like “Consolidation”
  • Edit mask: A binary mask indicating the main area to be modified, such as the “right lung”
  • Keep mask: A binary mask outlining parts of the original image to be preserved, like the “left lung”
 On the left is a simple drawing of the lungs. The drawing shows the borders of the left and right lung as well as the trachea and the left and right main stem bronchi. The text under the drawing reads: Original image. To the right of the drawing are the 3 additional inputs of RadEdit. They are arranged vertically. On top there is an example editing prompt. It reads
Figure 1: RadEdit’s inputs and outputs. By using separate “edit” and “keep” masks, RadEdit can make the desired modifications to an image with precise spatial control and realistic output.

RadEdit depends on a diffusion model for image editing, where the image is first converted to a latent noise representation by inverting the diffusion generative process. The noise representation is then iteratively denoised over multiple time steps. During each step, RadEdit:

  1. Uses the text prompt to conditionally generate pixels within the edit mask with classifier-free guidance.
  2. Generates the remaining pixels based on the original image and edited area.
  3. Replicates the content of the original image within the “keep” mask, ensuring that this area remains unaltered.

Finally, a quality check ensures that the edited image is faithful to the editing prompt. RadEdit uses Microsoft’s BioViL-T to compute an image-text alignment score that we can then use to filter out low-quality and unfaithful edits.

Simulating dataset shifts

A key feature of RadEdit is its ability to simulate dataset shifts with precise spatial control for comprehensive model performance evaluation. This includes differences in image acquisition, the appearance of underlying pathologies, and population characteristics.

Particularly notable is RadEdit’s ability to simulate image variations from different sources (e.g., different hospitals), helping researchers identify potential biases in models trained solely on data from one source. For example, in a COVID-19 study, if all positive cases in a dataset come from a single hospital and all negative cases come from a different hospital, a model trained on detecting COVID-19 might over-rely on hospital-specific indicators from the X-ray images. Among others, we considered the laterality markers in the corners of an X-ray (e.g., a highly visible letter “L” on the left side of the X-ray) as well as the amount of black space on the image edges to be hospital-specific indicators. To test if a model relies too much on differences in image acquisition, we created synthetic data using RadEdit, where we removed COVID-19 features while retaining hospital-specific indicators. After creating the synthetic dataset with the COVID-19 features no longer present, we can test if the COVID-10 detection model still predicts COVID-19. This would indicate that the model is biased with respect to hospital-specific indicators.

RadEdit can also remove specific diseases, like pneumothorax (collapsed lung), from an image while keeping treatment features like chest drains. This helps researchers understand how models detect and understand “visual shortcuts.” Because RadEdit maintains the size and location of the main anatomical structures (like lungs, ribs, and heart), it can also be used to stress-test segmentation models. For example, RadEdit can add rare abnormalities or medical devices to lung images to test how well segmentation models handle new variations, ensuring they generalize accurately across different populations. Figure 2 illustrates these three examples of stress-testing scenarios.

All drawings of lungs are the same as in Figure 1. The drawing shows the borders of the left and right lung as well as the trachea and the left and right main stem bronchi. In the first row on the left there are two drawings of a lung. The first drawing of a lung labelled
Figure 2: Stress-testing models by simulating dataset shifts via image editing.

Stress-testing multimodal models

We have used RadEdit to stress-test image classification and segmentation models, and we see potential for future applications in complex multimodal tasks like generating radiology reports. RadEdit can help identify limitations in multimodal large language models (MLLMs) like Microsoft’s MAIRA-1 and MAIRA-2, especially when dealing with rare conditions or unusual combinations of findings not well-represented in the training data. These MLLMs take one or more radiological images and relevant clinical information as input to produce detailed text reports.

RadEdit can generate synthetic image-report pairs for challenging scenarios. For example, manually editing a report to describe a rare combination of findings and then using RadEdit to edit the corresponding image, creates a valuable test case for the MLLM. This approach allows us to stress-test MLLM with diverse synthetic data, identifying weaknesses or biases and ensuring the model is more robust in real-world scenarios. This is a crucial step for using these models safely and effectively in clinical settings.

Implications and looking forward

RadEdit offers significant advantages for the biomedical research community. It helps identify biases and blind spots before deployment, helping to ensure that biomedical vision models perform reliably in clinical settings. By simulating dataset shifts, RadEdit reduces the need to collect additional evaluation data, saving time and resources.

RadEdit is applicable to a wide range of settings and can be used to stress-test state-of-the-art foundation models like Microsoft’s Rad-DINO (opens in new tab) and BiomedParse (opens in new tab). By integrating RadEdit into their research workflow, researchers can validate that their biomedical vision models are not only state-of-the-art but also more prepared for the complexities of real-world deployment. In the future, we envision RadEdit being applied to more complex multimodal tasks, such as generating radiology reports.

The code for RadEdit as well as the weights of the diffusion model we used can be found under https://huggingface.co/microsoft/radedit (opens in new tab).

Acknowledgments

We would like to thank our paper coauthors: Fernando Pérez-García, Sam Bond-Taylor, Pedro P. Sanchez, Boris van Breugel, Harshita Sharma, Valentina Salvatelli, Maria T. A. Wetscherek, Hannah Richardson, Matthew P. Lungren, Aditya Nori, and Ozan Oktay, as well as all our collaborators across Microsoft Cloud for Healthcare and Microsoft Health Futures.

RadEdit is intended for research purposes only and not for any commercial or clinical use.

The post Stress-testing biomedical vision models with RadEdit: A synthetic data approach for robust model deployment appeared first on Microsoft Research.

Read More

Microsoft Research Forum Episode 4: The future of multimodal models, a new “small” language model, and other AI updates

Microsoft Research Forum Episode 4: The future of multimodal models, a new “small” language model, and other AI updates

Microsoft Research Forum is a continuous exchange of ideas about science and technology research in the era of general AI. In the latest episode (opens in new tab), researchers discussed the latest multimodal AI models, advanced benchmarks for AI evaluation and model self-improvement, and an entirely new kind of computer for AI inference and hard optimization. Researchers at Microsoft are working to explore breakthrough technology that can help advance everything from weather prediction to materials design. 

Below is a brief recap of the event, including select quotes from the presentations. Register to join future Research Forum episodes and view previous sessions. Transcripts and additional resources can be found in the Research Forum briefing book.

Keynote

Phi-3-Vision: A highly capable and “small” language vision model (opens in new tab)

Research Forum | Episode 4 Keynote | Jianfeng Gao

Jianfeng Gao introduced Phi-3-Vision, an advanced and economical open-source multimodal model. As a member of the Phi-3 model family, Phi-3-Vision enhances language models by integrating multisensory skills, seamlessly combining language and vision capabilities.

“Phi-3-Vision is the first multimodal model in the Phi small model family. It matches and sometimes exceeds some of the capabilities of much larger models … at a much lower cost. And to help everyone build more affordable and accessible AI systems, we have released the model weights into the open-source community.”

Jianfeng Gao, Distinguished Scientist and Vice President, Microsoft Research Redmond


Panel Discussion

Beyond language: The future of multimodal models in healthcare, gaming, and AI (opens in new tab)

Research Forum | Episode 4 Panel | John Langford, Hoifung Poon, Katja Hofmann, Jianwei Yang

This discussion examined the transformative potential and core challenges of multimodal models across various domains, including precision health, game intelligence, and foundation models. Microsoft researchers John Langford, Hoifung Poon, Katja Hofmann, and Jianwei Yang shared their thoughts on future directions, bridging gaps, and fostering synergies within the field. 

“One of the really cutting-edge treatments for cancer these days is immunotherapy. That works by mobilizing the immune system to fight the cancer. And then one of the blockbuster drugs is a KEYTRUDA, that really can work miracles for some of the late- stage cancers … Unfortunately, only 20 to 30 percent of the patients actually respond. So that’s … a marquee example of what are the growth opportunity in precision health.”
Hoifung Poon, General Manager, Microsoft Research Health Futures

“We experience the world through vision, touch, and all our other senses before we start to make sense of any of the language that is spoken around us. So, it’s really, really interesting to think through the implications of that, and potentially, as we start to understand more about the different modalities that we can model and the different ways in which we combine them.”
Katja Hofmann, Senior Principal Researcher, Microsoft Research

“To really have a capable multimodal model, we need to encode different information from different modalities, for example, from vision, from language, from even audio, speech, etc. We need to develop a very capable encoder for each of these domains and then … tokenize each of these raw data.”
Jianwei Yang, Principal Researcher, Microsoft Research Redmond


Lightning Talks

Analog optical computing for sustainable AI and beyond (opens in new tab)

Research Forum | Episode 4 Talk 1 | Francesca Parmigiani and Jiaqi Chu

This talk presented a new kind of computer—an analog optical computer—that has the potential to accelerate AI inference and hard optimization workloads by 100x, leveraging hardware-software co-design to improve the efficiency and sustainability of real-world applications. 

“Most likely, you or your loved ones have been inside an MRI scan not really a great place to be in. Imagine if you can reduce that amount of time from 20 to 40 minutes to less than five minutes.”
Francesca Parmigiani, Principal Researcher, Microsoft Research Cambridge

“I’m really excited to share that we have just completed the second generation of [this] computer. It is much smaller in physical size, and this is a world first in that exactly the same computer is simultaneously solving hard optimization problems and accelerating machine learning inference. Looking ahead, we estimate that at scale, this computer can achieve around 450 tera operations per second per watt, which is a 100-times improvement as compared to state-of-the-art GPUs.”
Jiaqi Chu, Principal Researcher, Microsoft Research Cambridge


Direct Nash Optimization: Teaching language models to self-improve with general preferences (opens in new tab)

Research Forum | Episode 4 Talk 2 | Corby Rosset

This talk explored teaching language models to self-improve using AI preference feedback, challenging the model to play against itself and a powerful teacher until it arrives at a Nash equilibrium, resulting in state-of-the-art win rates against GPT-4 Turbo on benchmarks such as AlpacaEval and MT-Bench. 

“The traditional way to fine-tune an LLM for post-training … basically tells the model to emulate good behaviors, but it does not target or correct any mistakes or bad behaviors that it makes explicitly. … Self-improving post-training explicitly identifies and tries to correct bad behaviors or mistakes that the model makes.”
Corby Rosset, Senior Researcher, Microsoft Research AI Frontiers


Project Aurora: The first large-scale foundation model of the atmosphere (opens in new tab)

Research Forum | Episode 4 Talk 3 | Megan Stanley

This talk presented Aurora, a cutting-edge foundation model that offers a new approach to weather forecasting that could transform our ability to predict and mitigate the impacts of extreme events, air pollution, and the changing climate.

“If we look at Aurora’s ability to predict pollutants such as nitrogen dioxide that are strongly related to emissions from human activity, we can see that the model has learned to make these predictions with no emissions data provided. It’s learned the implicit patterns that cause the gas concentrations, which is very impressive.”
Megan Stanley, Senior Researcher, Microsoft Research AI for Science


A generative model of biology for in-silico experimentation and discovery (opens in new tab)

Research Forum | Episode 4 Talk 4 | Kevin Yang

This talk explored how deep learning enables generation of novel and useful biomolecules, allowing researchers and practitioners to better understand biology. This includes EvoDiff, a general-purpose diffusion framework that combines evolutionary-scale data with the distinct conditioning capabilities of diffusion models to generate new proteins, given a protein sequence.

“Often, protein engineers want proteins that perform a similar function to a natural protein, or they want to produce a protein that performs the same function but has other desirable properties, such as stability. By conditioning EvoDiff with a family of related sequences, we can generate new proteins that are very different in sequence space to the natural proteins but are predicted to fold into similar three-dimensional structures. These may be good starting points for finding new functions or for discovering versions of a protein with desirable properties.”
Kevin Yang, Senior Researcher, Microsoft Research New England


Fostering appropriate reliance on AI (opens in new tab)

Research Forum | Episode 4 Talk 5 | Mihaela Vorvoreanu

Since AI systems are probabilistic, they can make mistakes. One of the main challenges in human-AI interaction is to avoid overreliance on AI and empower people to determine when to accept or not accept an AI system’s recommendation. This talk explores Microsoft’s work in this area.

“This is where I think it is our responsibility as people working in UX disciplines—as people researching UX and human-computer interaction—to really, really step up to the front and see how it is our moment to shine and to address this problem.”
Mihaela Vorvoreanu, Director UX Research and Responsible AI Education, Microsoft AI Ethics and Effects in Engineering and Research (Aether)

The post Microsoft Research Forum Episode 4: The future of multimodal models, a new “small” language model, and other AI updates appeared first on Microsoft Research.

Read More

Research Focus: Week of September 23, 2024

Research Focus: Week of September 23, 2024

Welcome to Research Focus, a series of blog posts that highlights notable publications, events, code/datasets, new hires and other milestones from across the research community at Microsoft.

Research Focus | September 23, 2024

ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons

Time-series forecasting is a technique used to predict future values based on previously observed data points over time. It has extensive applications for traffic flow, renewable energy, retail, finance, and climate, among other uses. For these applications, it is crucial to provide forecasts across different prediction horizons, addressing both short- and long-term planning needs. Many decision-making processes also require not only point forecasts to quantify planning efficiency but also robust distributional estimations to manage uncertainty effectively. 

Delivering precise point and distributional forecasts across a spectrum of prediction horizons is a significant challenge. Prior research on developing deep learning models for time-series forecasting has often concentrated on isolated aspects, such as long-term point forecasting or short-term probabilistic estimations. This may result in skewed methodological choices and hinder the adaptability of these models to uncharted scenarios. While there is a rising trend in developing universal forecasting models, a thorough understanding of their advantages and drawbacks is still lacking.  

In a recent paper: ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons, researchers from Microsoft and external collaborators present a platform to evaluate these fundamental forecasting needs and to conduct a rigorous comparative analysis of related recent studies. They examine the latest models for universal time-series forecasting and discover that their analyses of methodological strengths and weaknesses are also applicable to these universal models. They then outline the limitations inherent in current research and underscore several avenues for future exploration. 


SynDL: A Large-Scale Synthetic Test Collection for Passage Retrieval

Information retrieval (IR) involves identifying and retrieving recorded data that is relevant to an information need. Large-scale test collections play a crucial role in IR research. However, existing IR research studies are commonly developed on small-scale datasets that rely on human assessors for relevance judgments – a time-intensive and expensive process. Recent studies have shown the strong capability of large language models (LLMs) in producing reliable relevance judgments with human accuracy but at a greatly reduced cost.

In a recent paper: SynDL: A Large-Scale Synthetic Test Collection for Passage Retrieval (opens in new tab), researchers from Microsoft and external colleagues address the missing large-scale ad-hoc document retrieval dataset. They extend the TREC Deep Learning Track (opens in new tab) test collection via additional language model synthetic labels to enable researchers to test and evaluate their search systems at a large scale. Such a test collection includes more than 1,900 test queries from previous tracks. The researchers compare system evaluation with past human labels and show that their synthetically created large-scale test collection can lead to highly correlated system rankings. 

Spotlight: Blog post

Research Focus: Week of September 9, 2024

Investigating vulnerabilities in LLMs; A novel total-duration-aware (TDA) duration model for text-to-speech (TTS); Generative expert metric system through iterative prompt priming; Integrity protection in 5G fronthaul networks.


Intelligent Router for LLM Workloads: Improving Performance Through Workload-Aware Scheduling

LLMs are used for a wide variety of tasks and scenarios, such as chat, question answering, code generation, summarization and reasoning. These tasks exhibit variations in their input and output characteristics. Requests for different tasks with distinct input and output characteristics are often served concurrently at a single model instance, which can lead to spikes in end-to-end latency, time to generate the first token, and time between tokens (in the case of a streaming request). Understanding the interplay between requests of different characteristics is important for optimizing the end-to-end performance during LLM inference.

In a recent preprint, Intelligent Router for LLM Workloads: Improving Performance Through Workload-Aware Scheduling, researchers from Microsoft propose a heuristic-guided reinforcement learning-based intelligent router for data-driven and workload-aware scheduling. This router leverages a trainable response-length predictor, and a novel formulation for estimating the impact of mixing different workloads to schedule queries across LLM instances and achieve over 11% lower end-to-end latency than existing approaches.


INTERNSHIP OPPORTUNITY

Apply now: Microsoft Research Undergrad Internship Program – Summer 2025

The Microsoft Research Undergrad Internship Program offers 12-week internships in Redmond, Washington; New York City; or Cambridge, Massachusetts, for rising college juniors and seniors who are passionate about technology and champion diversity and inclusion.

Come work alongside world-class researchers on state-of-the-art projects. Participants will collaborate with an extended network of visiting faculty, postdoctoral researchers, data and applied scientists, engineers, designers, and doctoral students to make important contributions to new and ongoing research. On-the-job learning will be augmented with mentoring, community building, and networking opportunities. Candidates from groups currently underrepresented in engineering and computer science are strongly encouraged to apply.

Applications (opens in new tab) will be accepted until October 21, 2024. Apply now!

The post Research Focus: Week of September 23, 2024 appeared first on Microsoft Research.

Read More

Eureka: Evaluating and understanding progress in AI

Eureka: Evaluating and understanding progress in AI

A summary of insights extracted by using the Eureka framework, shown via two radar charts for multimodal (left) and language (right) capabilities respectively. The radar charts show the best and worst performance observed for each capability.

In the fast-paced progress of AI, the question of how to evaluate and understand capabilities of state-of-the-art models is timelier than ever. New and capable models are being released frequently, and each release promises the next big leap in frontiers of intelligence. Yet, as researchers and developers, often we ask ourselves: Are these models all comparable, if not the same, in terms of capabilities? There are, of course, strong reasons to believe they are, given that many score similarly in standard benchmarks. In addition, rankings in the numerous leaderboards do not offer a consistent and detailed explanation of why a model is ranked slightly better than others. However, if some models are fundamentally different, what are their strengths and weaknesses? More importantly, are there capabilities that are essential for making AI useful in the real world but still universally challenging for most models? Answering such questions helps us understand where we are on the frontier of AI, and what capability improvements are needed to meet the expectations that humanity and science have for safe and responsible deployments of AI models. 

The prevalence of these models is dependent on our ability to mature the science of in-depth AI evaluation and measurement. In our latest open-source release and technical report EUREKA: Evaluating and Understanding Large Foundation Models (opens in new tab), we start answering these questions by running an in-depth measurement analysis across 12 state-of-the-art proprietary and open-weights models. Behind this analysis stands Eureka (opens in new tab), an open-source framework for standardizing evaluations of large foundation models, beyond single-score reporting and rankings. The framework currently supports both language and multimodal (text and image) data and enables developers to define custom pipelines for data processing, inference, and evaluation, with the possibility to inherit from existing pipelines and minimize development work. Eureka and all our evaluation pipelines are available as open source to foster transparent and reproducible evaluation practices. We hope to collaborate with the open-source community to share and expand current measurements for new capabilities and models. 

Focus on challenging and non-saturated capabilities

Eureka tests models across a rich collection of fundamental language and multimodal capabilities that are challenging for even the most advanced models, but are often overlooked by standard benchmarks commonly reported in model releases. In practice, this also means that our analysis intentionally does not pivot on oversaturated benchmarks. As unconventional as this may sound, it is motivated by two reasons. First, measurement on saturated benchmarks, for which most models perform over 95%, leaves very little space for failure analysis and model comparison. Second, even though saturation may be rooted in genuine model improvements, concerns about memorization and overfitting to labeling errors lower the credibility of measurements, especially in the very high accuracy regime. 

Microsoft Research blog

Microsoft at FAccT 2024: Advancing responsible AI research and practice

From studying how to identify gender bias in Hindi to uncovering AI-related risks for workers, Microsoft is making key contributions towards advancing the state of the art in responsible AI research. Check out their work at ACM FAccT 2024.


Beyond single-score measurements and universal rankings

Even though rankings and leaderboards remain the quickest way to compare models, they rarely uncover important conditions of failure. Due to overreliance on single-score aggregations of performance, the more nuanced comparative findings are hidden behind small differences between model scores aggregated across many capabilities and experimental conditions.

As we show in our study, the chase after these rankings has created surprising dynamics that do not necessarily lead to identical models, but to models that use different complementary skills to achieve comparable overall scores in important leaderboards. Imagine you are a triathlon athlete aiming to achieve an elite performance, which historically takes around two hours. Despite your ambition to hit this top-tier mark, you face constraints with limited time and resources for training and preparation. In practice, athletes often focus their best resources on excelling in certain disciplines while aiming for a satisfactory performance in others. They prioritize based on what they believe is most achievable given their time and experience.

We observe similar phenomena in the set of 12 models we study. Even if two models may score very closely for the same capability, disaggregating that performance across disciplines and input conditions shows that each model has its own complementary strengths. Identifying, measuring, and understanding these strengths for a single model is needed for planning targeted improvements. Repeating this process for a large set of models, as we do in Eureka, is needed for identifying the hypothetical frontier, guiding research and development, and creating a model that combines and delivers capabilities that build on the strengths observed in existing models. 

Measuring consistency: non-determinism and backward compatibility

When people work with collaborators or when they choose tools to assist them in everyday tasks, predictability and consistency are key to a successful collaboration. Similarly, humans and application developers expect their AI assistants and models to be consistent over time for similar inputs and interactions. In our analysis, we study this under-explored angle of model performance, by focusing on two key aspects: the determinism of answer outcomes for identical examples and prompts, and the backward compatibility of model answers at the example level after a model has been updated with a new version. Lack of consistency in either of these domains would lead to breaking trust with users and application developers. 

The analysis shows surprising results and opens new considerations for improvement. For example, we observe that very few large foundation models are fully deterministic and for most of them there are visible variations in the output — and most importantly in accuracy — when asked the same question several times, with generation temperature set to zero—a control that tells models to minimize randomness in generations. In addition, when comparing new model releases with earlier models from the same family, a significant amount of regress at the example level can be observed after the update, even though the overall accuracy may increase. In practice, this type of inconsistency can be frustrating for application developers who rely on prewritten examples and prompts propagated to a foundation model. 

Eureka Insights

Figure 1 is a high-level illustration of the current state of AI for Eureka-Bench, highlighting the best and the worst performances across various capabilities. These results reveal a nuanced picture of different models’ strengths, showing that no single model excels in all tasks. However, Claude 3.5 Sonnet, GPT-4o 2024-05-13, and Llama 3.1 405B consistently outperform others in several key areas.

A summary of insights extracted by using the Eureka framework, shown via two radar charts for multimodal (left) and language (right) capabilities respectively. The radar charts show the best and worst performance observed for each capability.
Figure 1 – Performance of best and worse models for multimodal (left) and language (right) datasets in in Eureka-Bench. The red frontier shows the performance of the worse model, indicating the area that is already solved for the set of capabilities. The green frontier shows the performance of the best model, indicating the best-known result with current technology. The blue horizon between the best model and the maximum performance shows the room for improvement for mastering the capability. The best performance sets indicated in the green border include all models that perform within 2% of the best observed result. 

Multimodal capabilities

Evaluation in Eureka reveals that state-of-the-art models are still fairly limited in their multimodal abilities, specifically when it comes to detailed image understanding (for example, localization of objects, geometric and spatial reasoning, and navigation), which is most needed in truly multimodal scenarios that require physical awareness, visual grounding, and localization. 

  1. State-of-the-art multimodal models struggle with geometric reasoning. 
    Models perform worse in reasoning about height than about depth. Claude 3.5 Sonnet and Gemini 1.5 Pro are the best performing models for this task, with Claude 3.5 Sonnet being the most accurate model for depth ordering, and Gemini 1.5 Pro the most accurate for height ordering. 
  2. Multimodal capabilities lag language capabilities. 
    On tasks that can be described either as multimodal or as language-only, the performance of most tested models is higher for the language-only condition. GPT-4o 2024-05-13 is the only model that consistently achieves better results when presented with both vision and language information, showing therefore that it can better fuse the two data modalities.
  3. Complementary performance across models for fundamental multimodal skills.
    Claude 3.5 Sonnet, GPT-4o 2024-05-13, and GPT-4 Turbo 2024-04-09 have comparable performance in multimodal question answering (MMMU). In tasks like object recognition and visual prompting, the performance of Claude 3.5 Sonnet is better or comparable to GPT-4o 2024-05-13, but Gemini 1.5 Pro outperforms them both. Finally, in tasks like object detection and spatial reasoning, GPT-4o 2024-05-13 is the most accurate model. 

Language

The evaluation through Eureka shows that there have been important advances from state-of-the-art models in the language capabilities of instruction following, long context question answering, information retrieval, and safety. The analysis also discovers major differences and gaps between models related to robustness to context length, factuality and grounding for information retrieval, and refusal behavior. 

  1. Faster improvements in instruction following across all model families. 
    Instruction following is the ability to follow guidance expressed in user prompts regarding specifications related to format, style, and structure of the generated content. Among the studied language capabilities, instruction following is where most models are improving faster, potentially due to strong investments in instruction tuning processes, with most models now having an instruction following rate of higher than 75%. 
  2. All models’ performance in question answering drops with longer context. 
    Contrary to “needle-in-a-haystack” experiments, testing state-of-the-art models on tasks that involve reasoning over long context shows significant decline in performance as context size grows. Amongst all models, GPT-4o 2024-05-13 and Llama 3.1 405B have the lowest drop in performance for longer context.
  3. Major gaps in factuality and grounding for information retrieval from parametric knowledge or input context. 
    Models exhibit query fact precision rates of lower than 55%, fact recall rates of lower than 25%, and rates of irrelevant and fabricated information above 20%. Llama 3.1 405B, GPT-4o 2024-05-13, and Claude 3.5 Sonnet are the top performers in this area across different conditions.
  4. High refusal rates. Lower accuracy in detecting toxic content vs. neutral content for most models. 
    While several models have high accuracy rates for toxicity detection, others (Gemini 1.5 Pro, Claude 3.5 Sonnet, Claude 3 Opus, and Llama 3.1 405B) exhibit low accuracy in classifying toxic content and a high refusal rate to classify toxic or neutral context, both of which make toxic content difficult to detect. During the safe language generation evaluation, models like GPT-4 1106 Preview and Mistral Large 2407 have the highest toxicity rates. GPT-4o 2024-05-13 is the only model that has both a high toxicity detection accuracy and a low toxicity score for safe language generation. 

Non-determinism

Several models have highly non-deterministic output for identical runs. Gemini 1.5 Pro, GPT-4 1106 Preview, GPT-4 Vision Preview, and GPT-4 Turbo 2024-04-09 show high non-determinism of outcomes. These results raise important questions regarding the stability of user and developer experiences when repeatedly inferencing with identical queries using the same prompt templates. Llama 3 70B, Llama 3.1 70B, and Mistral Large 2407 are almost perfectly deterministic. 

Backward compatibility

Backward incompatibility for shifts within the same model family is prevalent across all state-of-the-art models. This is reflected in high regression rates for individual examples and at a subcategory level. This type of regression can break trust with users and application developers during model updates. Regression varies per task and metric, but we observe several cases when it is higher than 10% across three model families (Claude, GPT, Llama), and sometimes they can dominate progress rates for whole subcategories of data. 

Conclusion

The complementary results extracted from this study highlight opportunities for improving current models across various areas, aiming to match the performance of the best model for each individual capability in this challenge set. However, several tasks in the challenge set remain difficult even for the most capable models. It is crucial to discuss and explore whether these gaps can be addressed with current technologies, architectures, and data synthesis protocols.

Finally, Eureka and the set of associated benchmarks are only the initial snapshot of an effort that aims at reliably measuring progress in AI. Our team is excited about further collaborations with the open-source community and research, with the goal of sharing and extending current measurements for new capabilities and models. 

The post Eureka: Evaluating and understanding progress in AI appeared first on Microsoft Research.

Read More

Research Focus: Week of September 9, 2024

Research Focus: Week of September 9, 2024

Welcome to Research Focus, a series of blog posts that highlights notable publications, events, code/datasets, new hires and other milestones from across the research community at Microsoft.

Decorative graphic with wavy shapes in the background in blues and purples. Text overlay in center left reads: “Research Focus: September 9, 2024”

Can LLMs be Fooled? Investigating Vulnerabilities in LLMs

Large language models (LLMs) are the de facto standard for numerous machine learning tasks, ranging from text generation and summarization to even code generation. They also play an integral role in various natural language processing (NLP) tasks. However, recent studies show they are susceptible to adversarial attacks, including prompt injections, jailbreaking and other strategies. As people and organizations increasingly rely on LLMs, it is crucial to be aware of these vulnerabilities and take precautions when deploying them in real-world scenarios. Therefore, understanding and mitigating these vulnerabilities is critical. 

In a recent paper: Can LLMs be Fooled? Investigating Vulnerabilities in LLMs, researchers from Microsoft examine multiple vulnerability categories, including model-based, training-time, and inference-time vulnerabilities, and then discuss mitigation strategies. These include “model editing,” which aims to modify LLMs’ behavior, and “chroma teaming,” which leverages the synergy of different teaming strategies to make LLMs more resilient. This paper synthesizes the findings from each vulnerability category and proposes new directions for research and development. Understanding the focal points of current vulnerabilities will help people better anticipate and mitigate future risks, paving the road for more robust and secure LLMs.  


Total-Duration-Aware Duration Modeling for Text-to-Speech Systems

For many text-to-speech (TTS) applications, it is crucial that the total duration of the generated speech can be accurately adjusted to the target duration by modifying the speech rate. For example, in a video dubbing scenario, the output speech must match or closely approximate the duration of the source audio to ensure synchronization with the video. However, the impact of adjusting the speech rate on speech quality, such as intelligibility and speaker characteristics, has been underexplored. 

In a recent paper: Total-Duration-Aware Duration Modeling for Text-to-Speech Systems, researchers from Microsoft propose a novel total-duration-aware (TDA) duration model for TTS, where phoneme durations are predicted not only from the text input but also from an additional input of the total target duration. They propose a MaskGIT-based duration model that enhances the diversity and quality of the predicted phoneme durations. Test results show that the proposed TDA duration models achieve better intelligibility and speaker similarity for various speech rate configurations compared to baseline models. The proposed MaskGIT-based model can also generate phoneme durations with higher quality and diversity compared to its regression or flow-matching counterparts.

microsoft research podcast

What’s Your Story: Weishung Liu

Principal PM Manager Weishung Liu shares how a career delivering products and customer experiences aligns with her love of people and storytelling and how—despite efforts to defy the expectations that come with growing up in Silicon Valley—she landed in tech.


GEMS: Generative Expert Metric System through Iterative Prompt Priming

Metrics and measurements are fundamental to identifying challenges, informing decisions, and resolving conflicts across engineering domains. Despite the abundance of data available, a single expert may struggle to work across multi-disciplinary data, while non-experts may find it unintuitive to create effective measures or transform theories into appropriate context-specific metrics. 

In a recent technical report: GEMS: Generative Expert Metric System through Iterative Prompt Priming, researchers from Microsoft and University of Illinois Urbana-Champaign address this challenge. They examine software communities within large software corporations, where different measures are used as proxies to locate counterparts within the organization to transfer tacit knowledge. They propose a prompt-engineering framework inspired by neural mechanisms, demonstrating that generative models can extract and summarize theories and perform basic reasoning, thereby transforming concepts into context-aware metrics to support software communities given software repository data. While this research focused on software communities, the framework’s applicability could extend across various fields, showcasing expert-theory-inspired metrics that aid in triaging complex challenges.


On the Criticality of Integrity Protection in 5G Fronthaul Networks

The modern 5G fronthaul, which connects base stations to radio units in cellular networks, is designed to deliver microsecond-level performance guarantees using Ethernet-based protocols. Unfortunately, due to potential performance overheads, as well as misconceptions about the low risk and impact of possible attacks, integrity protection is not considered a mandatory feature in the 5G fronthaul standards. 

In a recent paper: On the Criticality of Integrity Protection in 5G Fronthaul Networks, researchers from Microsoft and external colleagues show how the lack of protection can be exploited, making attacks easier and more powerful. They present a novel class of powerful attacks and a set of traditional attacks, which can both be fully launched from software over open packet-based interfaces, to cause performance degradation or denial of service to users over large geographical regions. These attacks do not require a physical radio presence or signal-based attack mechanisms, do not affect the network’s operation (e.g., not crashing the radios), and are highly severe (e.g., impacting multiple cells). The researchers demonstrate that adversaries could degrade performance of connected users by more than 80%, completely block a subset of users from ever attaching to the cell, or even generate signaling storm attacks of more than 2,500 signaling messages per minute, with just two compromised cells and four mobile users. They also present an analysis of countermeasures that meet the strict performance requirements of the fronthaul.


Microsoft Research in the news


Microsoft works with students to launch ‘Golden Record 2.0’ into space 

Geekwire | September 5, 2024

Forty-seven years after NASA sent a “Golden Record” into deep space to document humanity’s view of the world, Microsoft’s Project Silica is teaming up with a citizen-science effort to lay the groundwork — or, more aptly, the glasswork — for doing something similar. 

Related: Collaborators: Silica in space with Richard Black and Dexter Greene 

The post Research Focus: Week of September 9, 2024 appeared first on Microsoft Research.

Read More