Handheld surgical robot can help stem fatal blood loss

After a traumatic accident, there is a small window of time when medical professionals can apply lifesaving treatment to victims with severe internal bleeding. Delivering this type of care is complex, and key interventions require inserting a needle and catheter into a central blood vessel, through which fluids, medications, or other aids can be given. First responders, such as ambulance emergency medical technicians, are not trained to perform this procedure, so treatment can only be given after the victim is transported to a hospital. In some instances, by the time the victim arrives to receive care, it may already be too late.

A team of researchers at MIT Lincoln Laboratory, led by Laura Brattain and Brian Telfer from the Human Health and Performance Systems Group, together with physicians from the Center for Ultrasound Research and Translation (CURT) at Massachusetts General Hospital, led by Anthony Samir, have developed a solution to this problem. The Artificial Intelligence–Guided Ultrasound Intervention Device (AI-GUIDE) is a handheld platform technology that has the potential to help personnel with simple training to quickly install a catheter into a common femoral vessel, enabling rapid treatment at the point of injury.

“Simplistically, it’s like a highly intelligent stud-finder married to a precision nail gun.” says Matt Johnson, a research team member from the laboratory’s Human Health and Performance Systems Group.

AI-GUIDE is a platform device made of custom-built algorithms and integrated robotics that could pair with most commercial portable ultrasound devices. To operate AI-GUIDE, a user first places it on the patient’s body, near where the thigh meets the abdomen. A simple targeting display guides the user to the correct location and then instructs them to pull a trigger, which precisely inserts the needle into the vessel. The device verifies that the needle has penetrated the blood vessel, and then prompts the user to advance an integrated guidewire, a thin wire inserted into the body to guide a larger instrument, such as a catheter, into a vessel. The user then manually advances a catheter. Once the catheter is securely in the blood vessel, the device withdraws the needle and the user can remove the device.

With the catheter safely inside the vessel, responders can then deliver fluid, medicine, or other interventions.

As easy as pressing a button

The Lincoln Laboratory team developed the AI in the device by leveraging technology used for real-time object detection in images.

“Using transfer learning, we trained the algorithms on a large dataset of ultrasound scans acquired by our clinical collaborators at MGH,” says Lars Gjesteby, a member of the laboratory’s research team. “The images contain key landmarks of the vascular anatomy, including the common femoral artery and vein.”

These algorithms interpret the visual data coming in from the ultrasound that is paired with AI-GUIDE and then indicate the correct blood vessel location to the user on the display.

“The beauty of the on-device display is that the user never needs to interpret, or even see, the ultrasound imagery,” says Mohit Joshi, the team member who designed the display. “They are simply directed to move the device until a rectangle, representing the target vessel, is in the center of the screen.”

For the user, the device may seem as easy to use as pressing a button to advance a needle, but to ensure rapid and reliable success, a lot is happening behind the scenes. For example, when a patient has lost a large volume of blood and becomes hypotensive, veins that would typically be round and full of blood become flat. When the needle tip reaches the center of the vein, the wall of the vein is likely to “tent” inward, rather than being punctured by the needle. As a result, though the needle was injected to the proper location, it fails to enter the vessel.

To ensure that the needle reliably punctures the vessel, the team engineered the device to be able to check its own work.

“When AI-GUIDE injects the needle toward the center of the vessel, it searches for the presence of blood by creating suction,” says Josh Werblin, the program’s mechanical engineer. “Optics in the device’s handle trigger when blood is present, indicating that the insertion was successful.” This technique is part of why AI-GUIDE has shown very high injection success rates, even in hypotensive scenarios where veins are likely to tent.

Recently, the team published a paper in the journal Biosensors that reports on AI-GUIDE’s needle insertion success rates. Users with medical experience ranging from zero to greater than 15 years tested AI-GUIDE on an artificial model of human tissue and blood vessels and one expert user tested it on a series of live, sedated pigs. The team reported that after only two minutes of verbal training, all users of the device on the artificial human tissue were successful in placing a needle, with all but one completing the task in less than one minute. The expert user was also successful in quickly placing both the needle and the integrated guidewire and catheter in about a minute. The needle insertion speed and accuracy were comparable to that of experienced clinicians operating in hospital environments on human patients. 

Theodore Pierce, a radiologist and collaborator from MGH, says AI-GUIDE’s design, which makes it stable and easy to use, directly translates to low training requirements and effective performance. “AI-GUIDE has the potential to be faster, more precise, safer, and require less training than current manual image-guided needle placement procedures,” he says. “The modular design also permits easy adaptation to a variety of clinical scenarios beyond vascular access, including minimally invasive surgery, image-guided biopsy, and imaging-directed cancer therapy.”

In 2021, the team received an R&D 100 Award for AI-GUIDE, recognizing it among the year’s most innovative new technologies available for license or on the market. 

What’s next?

Right now, the team is continuing to test the device and work on fully automating every step of its operation. In particular, they want to automate the guidewire and catheter insertion steps to further reduce risk of user error or potential for infection.

“Retraction of the needle after catheter placement reduces the chance of an inadvertent needle injury, a serious complication in practice which can result in the transmission of diseases such as HIV and hepatitis,” says Pierce. “We hope that a reduction in manual manipulation of procedural components, resulting from complete needle, guidewire, and catheter integration, will reduce the risk of central line infection.”

AI-GUIDE was built and tested within Lincoln Laboratory’s new Virtual Integration Technology Lab (VITL). VITL was built in order to bring a medical device prototyping capability to the laboratory.

“Our vision is to rapidly prototype intelligent medical devices that integrate AI, sensing — particularly portable ultrasound — and miniature robotics to address critical unmet needs for both military and civilian care,” says Laura Brattain, who is the AI-GUIDE project co-lead and also holds a visiting scientist position at MGH. “In working closely with our clinical collaborators, we aim to develop capabilities that can be quickly translated to the clinical setting. We expect that VITL’s role will continue to grow.”

AutonomUS, a startup company founded by AI-GUIDE’s MGH co-inventors, recently secured an option for the intellectual property rights for the device. AutonomUS is actively seeking investors and strategic partners.

“We see the AI-GUIDE platform technology becoming ubiquitous throughout the health-care system,” says Johnson, “enabling faster and more accurate treatment by users with a broad range of expertise, for both pre-hospital emergency interventions and routine image-guided procedures.”

This work was supported by the U.S. Army Combat Casualty Care Research Program and Joint Program Committee – 6. Nancy DeLosa, Forrest Kuhlmann, Jay Gupta, Brian Telfer, David Maurer, Wes Hill, Andres Chamorro, and Allison Cheng provided technical contributions, and Arinc Ozturk, Xiaohong Wang, and Qian Li provided guidance on clinical use.

Read More

How artificial intelligence can help combat systemic racism

In 2020, Detroit police arrested a Black man for shoplifting almost $4,000 worth of watches from an upscale boutique. He was handcuffed in front of his family and spent a night in lockup. After some questioning, however, it became clear that they had the wrong man. So why did they arrest him in the first place?

The reason: a facial recognition algorithm had matched the photo on his driver’s license to grainy security camera footage.

Facial recognition algorithms — which have repeatedly been demonstrated to be less accurate for people with darker skin — are just one example of how racial bias gets replicated within and perpetuated by emerging technologies.

“There’s an urgency as AI is used to make really high-stakes decisions,” says MLK Visiting Professor S. Craig Watkins, whose academic home for his time at MIT is the Institute for Data, Systems, and Society (IDSS). “The stakes are higher because new systems can replicate historical biases at scale.”

Watkins, a professor at the University of Texas at Austin and the founding director of the Institute for Media Innovation​, researches the impacts of media and data-based systems on human behavior, with a specific concentration on issues related to systemic racism. “One of the fundamental questions of the work is: how do we build AI models that deal with systemic inequality more effectively?”

Ethical AI

Inequality is perpetuated by technology in many ways across many sectors. One broad domain is health care, where Watkins says inequity shows up in both quality of and access to care. The demand for mental health care, for example, far outstrips the capacity for services in the United States. That demand has been exacerbated by the pandemic, and access to care is harder for communities of color.

For Watkins, taking the bias out of the algorithm is just one component of building more ethical AI. He works also to develop tools and platforms that can address inequality outside of tech head-on. In the case of mental health access, this entails developing a tool to help mental health providers deliver care more efficiently.

“We are building a real-time data collection platform that looks at activities and behaviors and tries to identify patterns and contexts in which certain mental states emerge,” says Watkins. “The goal is to provide data-informed insights to care providers in order to deliver higher-impact services.”

Watkins is no stranger to the privacy concerns such an app would raise. He takes a user-centered approach to the development that is grounded in data ethics. “Data rights are a significant component,” he argues. “You have to give the user complete control over how their data is shared and used and what data a care provider sees. No one else has access.”

Combating systemic racism

Here at MIT, Watkins has joined the newly launched Initiative on Combatting Systemic Racism (ICSR), an IDSS research collaboration that brings together faculty and researchers from the MIT Stephen A. Schwarzman College of Computing and beyond. The aim of the ICSR is to develop and harness computational tools that can help effect structural and normative change toward racial equity.

The ICSR collaboration has separate project teams researching systemic racism in different sectors of society, including health care. Each of these “verticals” addresses different but interconnected issues, from sustainability to employment to gaming. Watkins is a part of two ICSR groups, policing and housing, that aim to better understand the processes that lead to discriminatory practices in both sectors. “Discrimination in housing contributes significantly to the racial wealth gap in the U.S.,” says Watkins.

The policing team examines patterns in how different populations get policed. “There is obviously a significant and charged history to policing and race in America,” says Watkins. “This is an attempt to understand, to identify patterns, and note regional differences.”

Watkins and the policing team are building models using data that details police interventions, responses, and race, among other variables. The ICSR is a good fit for this kind of research, says Watkins, who notes the interdisciplinary focus of both IDSS and the SCC. 

“Systemic change requires a collaborative model and different expertise,” says Watkins. “We are trying to maximize influence and potential on the computational side, but we won’t get there with computation alone.”

Opportunities for change

Models can also predict outcomes, but Watkins is careful to point out that no algorithm alone will solve racial challenges.

“Models in my view can inform policy and strategy that we as humans have to create. Computational models can inform and generate knowledge, but that doesn’t equate with change.” It takes additional work — and additional expertise in policy and advocacy — to use knowledge and insights to strive toward progress.

One important lever of change, he argues, will be building a more AI-literate society through access to information and opportunities to understand AI and its impact in a more dynamic way. He hopes to see greater data rights and greater understanding of how societal systems impact our lives.

“I was inspired by the response of younger people to the murders of George Floyd and Breonna Taylor,” he says. “Their tragic deaths shine a bright light on the real-world implications of structural racism and has forced the broader society to pay more attention to this issue, which creates more opportunities for change.”

Read More

Learning to fly

Andrea Henshall, a retired major in the U.S. Air Force and current MIT PhD student, has completed seven tours of combat, two years of aerial circus performance, and three higher education degrees (so far). But throughout each step of her journey, all roads seemed to point to MIT.

Currently working on her doctoral degree with an MIT master’s already in her toolkit, she is quick to attribute her academic success to MIT’s open educational resources. “I kept coming back to MIT-produced open source learning,” she says. “MIT dominates in educational philanthropy when it comes to free high-quality learning sources.” To this day, Henshall recommends MIT OpenCourseWare (OCW) and MITx courses to students and her fellow veterans who are transitioning out of the service. 

A love of flight and a drive to excel

Henshall first discovered OCW as she was pursuing her master’s degree in aeronautics and astronautics at MIT. Transitioning from an applied engineering program at the United States Air Force Academy to a more theoretical program proved a challenge for Henshall, and her first semester grades got her put on academic probation. During Independent Activities Period, she took Professor Gilbert Strang’s linear algebra courses on OCW, which included both videos and homework. Henshall found Strang very engaging and easy to learn from and found it helpful to work through the homework when they had the solutions available. She was able to lift her grades the following semester, and by the end of her program, she was getting all A’s. Henshall says, “OpenCourseWare really saved me. I was worried I wouldn’t be able to complete my master’s.” 

Ever since Henshall learned the term “astronautical engineer” in the fourth grade, she knew what she wanted to be when she grew up. That early love of outer space and building things led her to a bachelor’s degree in astronautical engineering and the Air Force. There she served as a research and development officer, instructor pilot, and chief financial officer of her squadron. But a non-combat-related injury forced her to medically retire from being a pilot. “I was not doing well physically, and it was impossible for me to get hired to be a pilot outside of the Air Force.” After a brief detour as a part-time aerial circus performer, she decided to go back to school.

Learning how to learn

Working outside of academia for eight years proved to be a tough transition. Henshall says, “I had to translate the work I had done in the military into something relevant for an academic application, and the language they were looking for was very different from what I was used to.” She thought acquiring more recent academic work might help improve her application. She attended Auburn University for her second master’s degree (this time in computer science and software engineering) and started a PhD. Again she turned to MIT OCW to supplement her studies. 

Henshall says, “I remembered vividly how much it had helped me in 2005, so of course that’s where I was going to start. Then I noticed that OCW linked to MITx, which had more interactive quizzes.” The OCW platform had also become more robust since she had first used it. “Back then, it was new, there wasn’t necessarily a standard,” she says. Over 10 years later, she found that most courses had more material, videos, and notes that more closely approximated an MIT course experience. Those additional open education resources gave Henshall an extra edge to complete a 21-month program in 12 months with a 4.0 GPA. Her advisor told her that she had the best thesis defense he had seen in 25 years. 

In 2019, Henshall’s success helped her get accepted to MIT’s PhD program in the Department of Aeronautics and Astronautics, in the Autonomy and Embedded Robotics Accelerated (AERA) lab under the Laboratory for Information and Decision Systems (LIDS), with a Lester Durand Gardner Fellowship. Her focus is controls systems with a minor in quantum information. She says, “I’m literally living my dream. I’m at my dream school with my dream advisor.” Working with Professor Sertac Karaman in LIDS, Henshall plans to write her thesis on multi-agent reinforcement learning. But her relationship with online learning is far from over; again she has turned to OCW and MITx resources for the foundation to succeed in subjects such as controls, machine learning, quantum mechanics, and quantum computation.

When the pandemic struck the East Coast, Henshall was only nine months into her PhD program at MIT. The pivot to online learning made it difficult to continue building relationships with classmates. But what was a new course experience for many learners during the pandemic felt very familiar to Henshall. “I had a leg up because I already knew how to learn through prerecorded videos on a computer instead of three-dimensional human standing in front of a chalkboard. I had already learned how to learn.”

A lifelong commitment to service

Henshall plans to return to the Department of Defense or related industries. Currently, she works collaboratively on two major projects related to her PhD thesis and her career path after she completes the program. The first project is an AI accelerator program through the Air Force. Her work with unmanned aerial vehicles (a.k.a. drones) uses a small quadrotor to autonomously and quickly search a building using reinforcement learning. The primary intended use is search and rescue. The second project involves research into multi-agent reinforcement learning and pathfinding. While also intended for search and rescue, they could be used for a variety of non-emergency inspection purposes as well. 

Henshall is eager to share open education resources. At Auburn she shared OCW materials with her classmates, and now she uses them with the students she tutors. She’s also committed to sharing knowledge and resources with her fellow service members, and is an active member of a number of veterans’ organizations. With the Warrior-Scholar Project, she answers questions from enlisted people going into undergraduate programs, ranging from “What’s parking like?” to “How did you prepare for school?” As a Service to School ambassador, she is assigned to mentor veterans who are transitioning out of the military and looking to apply to graduate school, usually MIT hopefuls or other competitive schools. She’s able to draw from her own application experience to help others identify the core message their application should communicate and finesse the language to sound less like a military brief and more like the “academic speak” they will encounter moving forward.

Henshall says, “My trajectory would be so different if MITx and OCW didn’t exist, and I feel that’s true for so many thousands of other students. So many other institutions have copied the model, but MIT was the first and it’s still the best.”

Read More

When it comes to AI, can we ditch the datasets?

Huge amounts of data are needed to train machine-learning models to perform image classification tasks, such as identifying damage in satellite photos following a natural disaster. However, these data are not always easy to come by. Datasets may cost millions of dollars to generate, if usable data exist in the first place, and even the best datasets often contain biases that negatively impact a model’s performance.

To circumvent some of the problems presented by datasets, MIT researchers developed a method for training a machine learning model that, rather than using a dataset, uses a special type of machine-learning model to generate extremely realistic synthetic data that can train another model for downstream vision tasks.

Their results show that a contrastive representation learning model trained using only these synthetic data is able to learn visual representations that rival or even outperform those learned from real data.

This special machine-learning model, known as a generative model, requires far less memory to store or share than a dataset. Using synthetic data also has the potential to sidestep some concerns around privacy and usage rights that limit how some real data can be distributed. A generative model could also be edited to remove certain attributes, like race or gender, which could address some biases that exist in traditional datasets.

“We knew that this method should eventually work; we just needed to wait for these generative models to get better and better. But we were especially pleased when we showed that this method sometimes does even better than the real thing,” says Ali Jahanian, a research scientist in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and lead author of the paper.

Jahanian wrote the paper with CSAIL grad students Xavier Puig and Yonglong Tian, and senior author Phillip Isola, an assistant professor in the Department of Electrical Engineering and Computer Science. The research will be presented at the International Conference on Learning Representations.

Generating synthetic data

Once a generative model has been trained on real data, it can generate synthetic data that are so realistic they are nearly indistinguishable from the real thing. The training process involves showing the generative model millions of images that contain objects in a particular class (like cars or cats), and then it learns what a car or cat looks like so it can generate similar objects.

Essentially by flipping a switch, researchers can use a pretrained generative model to output a steady stream of unique, realistic images that are based on those in the model’s training dataset, Jahanian says.

But generative models are even more useful because they learn how to transform the underlying data on which they are trained, he says. If the model is trained on images of cars, it can “imagine” how a car would look in different situations — situations it did not see during training — and then output images that show the car in unique poses, colors, or sizes.

Having multiple views of the same image is important for a technique called contrastive learning, where a machine-learning model is shown many unlabeled images to learn which pairs are similar or different.

The researchers connected a pretrained generative model to a contrastive learning model in a way that allowed the two models to work together automatically. The contrastive learner could tell the generative model to produce different views of an object, and then learn to identify that object from multiple angles, Jahanian explains.

“This was like connecting two building blocks. Because the generative model can give us different views of the same thing, it can help the contrastive method to learn better representations,” he says.

Even better than the real thing

The researchers compared their method to several other image classification models that were trained using real data and found that their method performed as well, and sometimes better, than the other models.

One advantage of using a generative model is that it can, in theory, create an infinite number of samples. So, the researchers also studied how the number of samples influenced the model’s performance. They found that, in some instances, generating larger numbers of unique samples led to additional improvements.

“The cool thing about these generative models is that someone else trained them for you. You can find them in online repositories, so everyone can use them. And you don’t need to intervene in the model to get good representations,” Jahanian says.

But he cautions that there are some limitations to using generative models. In some cases, these models can reveal source data, which can pose privacy risks, and they could amplify biases in the datasets they are trained on if they aren’t properly audited.

He and his collaborators plan to address those limitations in future work. Another area they want to explore is using this technique to generate corner cases that could improve machine learning models. Corner cases often can’t be learned from real data. For instance, if researchers are training a computer vision model for a self-driving car, real data wouldn’t contain examples of a dog and his owner running down a highway, so the model would never learn what to do in this situation. Generating that corner case data synthetically could improve the performance of machine learning models in some high-stakes situations.

The researchers also want to continue improving generative models so they can compose images that are even more sophisticated, he says.

This research was supported, in part, by the MIT-IBM Watson AI Lab, the United States Air Force Research Laboratory, and the United States Air Force Artificial Intelligence Accelerator.

Read More

Computational modeling guides development of new materials

Metal-organic frameworks, a class of materials with porous molecular structures, have a variety of possible applications, such as capturing harmful gases and catalyzing chemical reactions. Made of metal atoms linked by organic molecules, they can be configured in hundreds of thousands of different ways.

To help researchers sift through all of the possible metal-organic framework (MOF) structures and help identify the ones that would be most practical for a particular application, a team of MIT computational chemists has developed a model that can analyze the features of a MOF structure and predict if it will be stable enough to be useful.

The researchers hope that these computational predictions will help cut the development time of new MOFs.

“This will allow researchers to test the promise of specific materials before they go through the trouble of synthesizing them,” says Heather Kulik, an associate professor of chemical engineering at MIT.

The MIT team is now working to develop MOFs that could be used to capture methane gas and convert it to useful compounds such as fuels.

The researchers described their new model in two papers, one in the Journal of the American Chemical Society and one in Scientific Data. Graduate students Aditya Nandy and Gianmarco Terrones are the lead authors of the Scientific Data paper, and Nandy is also the lead author of the JACS paper. Kulik is the senior author of both papers.

Modeling structure

MOFs consist of metal atoms joined by organic molecules called linkers to create a rigid, cage-like structure. The materials also have many pores, which makes them useful for catalyzing reactions involving gases but can also make them less structurally stable.

“The limitation in seeing MOFs realized at industrial scale is that although we can control their properties by controlling where each atom is in the structure, they’re not necessarily that stable, as far as materials go,” Kulik says. “They’re very porous and they can degrade under realistic conditions that we need for catalysis.”

Scientists have been working on designing MOFs for more than 20 years, and thousands of possible structures have been published. A centralized repository contains about 10,000 of these structures but is not linked to any of the published findings on the properties of those structures.

Kulik, who specializes in using computational modeling to discover structure-property relationships of materials, wanted to take a more systematic approach to analyzing and classifying the properties of MOFs.

“When people make these now, it’s mostly trial and error. The MOF dataset is really promising because there are so many people excited about MOFs, so there’s so much to learn from what everyone’s been working on, but at the same time, it’s very noisy and it’s not systematic the way it’s reported,” she says.

Kulik and her colleagues set out to analyze published reports of MOF structures and properties using a natural-language-processing algorithm. Using this algorithm, they scoured nearly 4,000 published papers, extracting information on the temperature at which a given MOF would break down. They also pulled out data on whether particular MOFs can withstand the conditions needed to remove solvents used to synthesize them and make sure they become porous.

Once the researchers had this information, they used it to train two neural networks to predict MOFs’ thermal stability and stability during solvent removal, based on the molecules’ structure.

“Before you start working with a material and thinking about scaling it up for different applications, you want to know will it hold up, or is it going to degrade in the conditions I would want to use it in?” Kulik says. “Our goal was to get better at predicting what makes a stable MOF.”

Better stability

Using the model, the researchers were able to identify certain features that influence stability. In general, simpler linkers with fewer chemical groups attached to them are more stable. Pore size is also important: Before the researchers did their analysis, it had been thought that MOFs with larger pores might be too unstable. However, the MIT team found that large-pore MOFs can be stable if other aspects of their structure counteract the large pore size.

“Since MOFs have so many things that can vary at the same time, such as the metal, the linkers, the connectivity, and the pore size, it is difficult to nail down what governs stability across different families of MOFs,” Nandy says. “Our models enable researchers to make predictions on existing or new materials, many of which have yet to be made.”

The researchers have made their data and models available online. Scientists interested in using the models can get recommendations for strategies to make an existing MOF more stable, and they can also add their own data and feedback on the predictions of the models.

The MIT team is now using the model to try to identify MOFs that could be used to catalyze the conversion of methane gas to methanol, which could be used as fuel. Kulik also plans to use the model to create a new dataset of hypothetical MOFs that haven’t been built before but are predicted to have high stability. Researchers could then screen this dataset for a variety of properties.

“People are interested in MOFs for things like quantum sensing and quantum computing, all sorts of different applications where you need metals distributed in this atomically precise way,” Kulik says.

The research was funded by DARPA, the U.S. Office of Naval Research, the U.S. Department of Energy, a National Science Foundation Graduate Research Fellowship, a Career Award at the Scientific Interface from the Burroughs Wellcome Fund, and an AAAS Marion Milligan Mason Award.

Read More

Unlocking new doors to artificial intelligence

Artificial intelligence research is constantly developing new hypotheses that have the potential to benefit society and industry; however, sometimes these benefits are not fully realized due to a lack of engineering tools. To help bridge this gap, graduate students in the MIT Department of Electrical Engineering and Computer Science’s 6-A Master of Engineering (MEng) Thesis Program work with some of the most innovative companies in the world and collaborate on cutting-edge projects, while contributing to and completing their MEng thesis.

During a portion of the last year, four 6-A MEng students teamed up and completed an internship with IBM Research’s advanced prototyping team through the MIT-IBM Watson AI Lab on AI projects, often developing web applications to solve a real-world issue or business use cases. Here, the students worked alongside AI engineers, user experience engineers, full-stack researchers, and generalists to accommodate project requests and receive thesis advice, says Lee Martie, IBM research staff member and 6-A manager. The students’ projects ranged from generating synthetic data to allow for privacy-sensitive data analysis to using computer vision to identify actions in video that allows for monitoring human safety and tracking build progress on a construction site.

“I appreciated all of the expertise from the team and the feedback,” says 6-A graduate Violetta Jusiega ’21, who participated in the program. “I think that working in industry gives the lens of making sure that the project’s needs are satisfied and [provides the opportunity] to ground research and make sure that it is helpful for some use case in the future.”

Jusiega’s research intersected the fields of computer vision and design to focus on data visualization and user interfaces for the medical field. Working with IBM, she built an application programming interface (API) that let clinicians interact with a medical treatment strategy AI model, which was deployed in the cloud. Her interface provided a medical decision tree, as well as some prescribed treatment plans. After receiving feedback on her design from physicians at a local hospital, Jusiega developed iterations of the API and how the results where displayed, visually, so that it would be user-friendly and understandable for clinicians, who don’t usually code. She says that, “these tools are often not acquired into the field because they lack some of these API principles which become more important in an industry where everything is already very fast paced, so there’s little time to incorporate a new technology.” But this project might eventually allow for industry deployment. “I think this application has a bunch of potential, whether it does get picked up by clinicians or whether it’s simply used in research. It’s very promising and very exciting to see how technology can help us modify, or I can improve, the health-care field to be even more custom-tailored towards patients and giving them the best care possible,” she says.

Another 6-A graduate student, Spencer Compton, was also considering aiding professionals to make more informed decisions, for use in settings including health care, but he was tackling it from a causal perspective. When given a set of related variables, Compton was investigating if there was a way to determine not just correlation, but the cause-and-effect relationship between them (the direction of the interaction) from the data alone. For this, he and his collaborators from IBM Research and Purdue University turned to a field of math called information theory. With the goal of designing an algorithm to learn complex networks of causal relationships, Compton used ideas relating to entropy, the randomness in a system, to help determine if a causal relationship is present and how variables might be interacting. “When judging an explanation, people often default to Occam’s razor” says Compton. “We’re more inclined to believe a simpler explanation than a more complex one.” In many cases, he says, it seemed to perform well. For instance, they were able to consider variables such as lung cancer, pollution, and X-ray findings. He was pleased that his research allowed him to help create a framework of “entropic causal inference” that could aid in safe and smart decisions in the future, in a satisfying way. “The math is really surprisingly deep, interesting, and complex,” says Compton. “We’re basically asking, ‘when is the simplest explanation correct?’ but as a math question.”

Determining relationships within data can sometimes require large volumes of it to suss out patterns, but for data that may contain sensitive information, this may not be available. For her master’s work, Ivy Huang worked with IBM Research to generate synthetic tabular data using a natural language processing tool called a transformer model, which can learn and predict future values from past values. Trained on real data, the model can produce new data with similar patterns, properties, and relationships without restrictions like privacy, availability, and access that might come with real data in financial transactions and electronic medical records. Further, she created an API and deployed the model in an IBM cluster, which allowed users increased access to the model and abilities to query it without compromising the original data.

Working with the advanced prototyping team, MEng candidate Brandon Perez also considered how to gather and investigate data with restrictions, but in his case it was to use computer vision frameworks, centered on an action recognition model, to identify construction site happenings. The team based their work on the Moments in Time dataset, which contains over a million three-second video clips with about 300 attached classification labels, and has performed well during AI training. However, the group needed more construction-based video data. For this, they used YouTube-8M. Perez built a framework for testing and fine-tuning existing object detection models and action recognition models that could plug into an automatic spatial and temporal localization tool — how they would identify and label particular actions in a video timeline. “I was satisfied that I was able to explore what made me curious, and I was grateful for the autonomy that I was given with this project,” says Perez. “I felt like I was always supported, and my mentor was a great support to the project.”

“The kind of collaborations that we have seen between our MEng students and IBM researchers are exactly what the 6-A MEng Thesis program at MIT is all about,” says Tomas Palacios, professor of electrical engineering and faculty director of the MIT 6-A MEng Thesis program. “For more than 100 years, 6-A has been connecting MIT students with industry to solve together some of the most important problems in the world.”

Read More

3 Questions: Fotini Christia on racial equity and data science

Fotini Christia is the Ford International Professor in the Social Sciences in the Department of Political Science, associate director of the Institute for Data, Systems, and Society (IDSS), and director of the Sociotechnical Systems Research Center (SSRC). Her research interests include issues of conflict and cooperation in the Muslim world, and she has conducted fieldwork in Afghanistan, Bosnia, Iran, the Palestinian Territories, Syria, and Yemen. She has co-organized the IDSS Research Initiative on Combatting Systemic Racism (ICSR), which works to bridge the social sciences, data science, and computation by bringing researchers from these disciplines together to address systemic racism across housing, health care, policing, education, employment, and other sectors of society.

Q: What is the IDSS/ICSR approach to systemic racism research?

A: The Research Initiative on Combatting Systemic Racism (ICSR) aims to seed and coordinate cross-disciplinary research to identify and overcome racially discriminatory processes and outcomes across a range of U.S. institutions and policy domains.

Building off the extensive social science literature on systemic racism, the focus of this research initiative is to use big data to develop and harness computational tools that can help effect structural and normative change toward racial equity.

The initiative aims to create a visible presence at MIT for cutting-edge computational research with a racial equity lens, across societal domains that will attract and train students and scholars.

The steering committee for this research initiative is composed of underrepresented minority faculty members from across MIT’s five schools and the MIT Schwarzman College of Computing. Members will serve as close advisors to the initiative as well as share the findings of our work beyond MIT’s campus. MIT Chancellor Melissa Nobles heads this committee.

Q: What role can data science play in helping to effect change toward racial equity?

A: Existing work has shown racial discrimination in the job market, in the criminal justice system, as well as in education, health care, and access to housing, among other places. It has also underlined how algorithms could further entrench such bias — be it in training data or in the people who build them. Data science tools can not only help identify, but also contribute to, proposing fixes on racially inequitable outcomes that result from implicit or explicit biases in governing institutional practices in the public and private sector, and more recently from the use of AI and algorithmic methods in decision-making.

To that effect, this initiative will produce research that explores and collects the relevant big data across domains, while paying attention to the ways such data are collected, and focus on improving and developing data-driven computational tools to address racial disparities in structures and institutions that have reproduced racially discriminatory outcomes in American society.

The strong correlation between race, class, educational attainment, and various attitudes and behaviors in the American context can make it extremely difficult to rule out the influence of confounding factors. Thus, a key motivation for our research initiative is to highlight the importance of causal analysis using computational methods, and focus on understanding the opportunities of big data and algorithmic decision-making to address racial inequities and promote racial justice — beyond de-biasing algorithms. The intent is to also codify methodologies on equity-informed research practices and produce tools that are clear on the quantifiable expected social costs and benefits, as well as on the downstream effects on systemic racism more broadly.

Q: What are some ways that the ICSR might conduct or follow-up on research seeking real-world impact or policy change?

A: This type of research has ethical and societal considerations at its core, especially as they pertain to historically disadvantaged groups in the U.S., and will be coordinated with and communicated to local stakeholders to drive relevant policy decisions. This initiative intends to establish connections to URM [underrepresented minority] researchers and students at underrepresented universities and to directly collaborate with them on these research efforts. To that effect, we are leveraging existing programs such as the MIT Summer Research Program (MSRP).

To ensure that our research targets the right problems bringing a racial equity lens with an interest to effect policy change, we will also connect with community organizations in minority neighborhoods who often bear the brunt of the direct and indirect effects of systemic racism, as well as with local government offices that work to address inequity in service provision in these communities. Our intent is to directly engage IDSS students with these organizations to help develop and test algorithmic tools for racial equity.

Read More

A new resource for teaching responsible technology development

Understanding the broader societal context of technology is becoming ever more critical as advances in computing show no signs of slowing. As students code, experiment, and build systems, being able to ask questions and make sense of hard problems involving social and ethical responsibility is as important as the technology they’re studying and developing.

To train students to practice responsible technology development and provide opportunities to have these conversations in the classroom setting, members from across computing, data sciences, humanities, arts, and social sciences have been collaborating to craft original pedagogical materials that can be incorporated into existing classes at MIT.

All of the materials, created through the Social and Ethical Responsibilities of Computing (SERC), a cross-cutting initiative of the MIT Schwarzman College of Computing, are now freely available via MIT OpenCourseWare (OCW). The collection includes original active learning projects, homework assignments, in-class demonstrations, and other resources and tools found useful in education at MIT.

“We’re delighted to partner with OCW to make these materials widely available. By doing so, our goal is to enable instructors to incorporate them into their courses so that students can gain hands-on practice and training in SERC,” says Julie Shah, associate dean of SERC and professor of aeronautics and astronautics.

For the last two years, SERC has been bringing together cross-disciplinary teams of faculty, researchers, and students to generate the original content. Most of the materials featured on OCW were produced by participants in SERC’s semester-long Action Groups on Active Learning Projects in which faculty from humanities, arts, and social sciences are paired with faculty in computing and data sciences to collaborate on new projects for each of their existing courses. Throughout the semester, the action groups worked with SERC on content development and pilot-tested the new materials before the results were published.

The associated instructors who created course materials featured on the new resource site include Leslie Kaelbling for class 6.036 (Introduction to Machine Learning), Daniel Jackson and Arvind Satyanaran for class 6.170 (Software Studio), Jacob Andreas and Catherine D’Ignazio for class 6.864 (Natural Language Processing), Dwai Banerjee for STS.012 (Science in Action: Technologies and Controversies in Everyday Life), and Will Deringer for STS.047 (Quantifying People: A History of Social Science). SERC also enlisted a number of graduate students and postdocs to help the instructors develop the materials.

Andreas, D’Ignazio, and PhD student Harini Suresh recently reflected on their effort together in an episode of Chalk Radio, the OCW podcast about inspired teaching at MIT. Andreas observed that students at MIT and elsewhere take classes in advanced computing techniques like machine learning, but there is still often a “gap between the way we are training these people and the way these tools are getting deployed in practice.” “The thing that surprised me most,” he continued, “was the number of students who said, ‘I’ve never done an assignment like this in my whole undergraduate or graduate training.’”

In a second SERC podcast episode, released on Feb. 23, computer science professor Jackson and graduate student Serena Booth discuss ethics, software design, and impact on everyday people.

Organized by topic areas, including privacy and surveillance; inequality, justice, and human rights; artificial intelligence and algorithms; social and environmental impacts; autonomous systems and robotics; ethical computing and practice; and law and policy, the site also spotlights materials from the MIT Case Studies in Social and Ethical Responsibilities of Computing, an ongoing series that examines social, ethical, and policy challenges of present-day efforts in computing. The specially commissioned and peer-reviewed case studies are brief and intended to be effective for undergraduate instruction across a range of classes and fields of study. Like the new materials on MIT OpenCourseWare, the SERC Case Studies series is made available for free via open-access publishing.

Several issues have been published to date since the series launched in February 2020. The latest issue, the third in the series which was released just last month, comprises five original case studies that explore a range of subjects from whether the rise of automation is a threat to the American workforce to the role algorithms play in electoral redistricting. Penned by faculty and researchers from across MIT as well as from Vanderbilt University and George Washington University, all of the cases are based on the authors’ original research.

With many more in the pipeline, new content will be published on OCW twice a year to keep the site updated with SERC-related materials.

“With computing being one of OCW’s most popular topics, this spotlight on social and ethical responsibility will reach millions of learners,” says Curt Newton, director of OCW. “And by sharing how MIT faculty and students use the materials, we’re creating pathways for educators around the world to adapt the materials for maximum relevance to their students.”

Read More

The benefits of peripheral vision for machines

Perhaps computer vision and human vision have more in common than meets the eye?

Research from MIT suggests that a certain type of robust computer-vision model perceives visual representations similarly to the way humans do using peripheral vision. These models, known as adversarially robust models, are designed to overcome subtle bits of noise that have been added to image data.

The way these models learn to transform images is similar to some elements involved in human peripheral processing, the researchers found. But because machines do not have a visual periphery, little work on computer vision models has focused on peripheral processing, says senior author Arturo Deza, a postdoc in the Center for Brains, Minds, and Machines.

“It seems like peripheral vision, and the textural representations that are going on there, have been shown to be pretty useful for human vision. So, our thought was, OK, maybe there might be some uses in machines, too,” says lead author Anne Harrington, a graduate student in the Department of Electrical Engineering and Computer Science.

The results suggest that designing a machine-learning model to include some form of peripheral processing could enable the model to automatically learn visual representations that are robust to some subtle manipulations in image data. This work could also help shed some light on the goals of peripheral processing in humans, which are still not well-understood, Deza adds.

The research will be presented at the International Conference on Learning Representations.

Double vision

Humans and computer vision systems both have what is known as foveal vision, which is used for scrutinizing highly detailed objects. Humans also possess peripheral vision, which is used to organize a broad, spatial scene. Typical computer vision approaches attempt to model foveal vision — which is how a machine recognizes objects — and tend to ignore peripheral vision, Deza says.

But foveal computer vision systems are vulnerable to adversarial noise, which is added to image data by an attacker. In an adversarial attack, a malicious agent subtly modifies images so each pixel has been changed very slightly — a human wouldn’t notice the difference, but the noise is enough to fool a machine. For example, an image might look like a car to a human, but if it has been affected by adversarial noise, a computer vision model may confidently misclassify it as, say, a cake, which could have serious implications in an autonomous vehicle.

To overcome this vulnerability, researchers conduct what is known as adversarial training, where they create images that have been manipulated with adversarial noise, feed them to the neural network, and then correct its mistakes by relabeling the data and then retraining the model.

“Just doing that additional relabeling and training process seems to give a lot of perceptual alignment with human processing,” Deza says.

He and Harrington wondered if these adversarially trained networks are robust because they encode object representations that are similar to human peripheral vision. So, they designed a series of psychophysical human experiments to test their hypothesis.

Screen time

They started with a set of images and used three different computer vision models to synthesize representations of those images from noise: a “normal” machine-learning model, one that had been trained to be adversarially robust, and one that had been specifically designed to account for some aspects of human peripheral processing, called Texforms. 

The team used these generated images in a series of experiments where participants were asked to distinguish between the original images and the representations synthesized by each model. Some experiments also had humans differentiate between different pairs of randomly synthesized images from the same models.

Participants kept their eyes focused on the center of a screen while images were flashed on the far sides of the screen, at different locations in their periphery. In one experiment, participants had to identify the oddball image in a series of images that were flashed for only milliseconds at a time, while in the other they had to match an image presented at their fovea, with two candidate template images placed in their periphery.

demo of systemexample of experiment

When the synthesized images were shown in the far periphery, the participants were largely unable to tell the difference between the original for the adversarially robust model or the Texform model. This was not the case for the standard machine-learning model.

However, what is perhaps the most striking result is that the pattern of mistakes that humans make (as a function of where the stimuli land in the periphery) is heavily aligned across all experimental conditions that use the stimuli derived from the Texform model and the adversarially robust model. These results suggest that adversarially robust models do capture some aspects of human peripheral processing, Deza explains.

The researchers also computed specific machine-learning experiments and image-quality assessment metrics to study the similarity between images synthesized by each model. They found that those generated by the adversarially robust model and the Texforms model were the most similar, which suggests that these models compute similar image transformations.

“We are shedding light into this alignment of how humans and machines make the same kinds of mistakes, and why,” Deza says. Why does adversarial robustness happen? Is there a biological equivalent for adversarial robustness in machines that we haven’t uncovered yet in the brain?”

Deza is hoping these results inspire additional work in this area and encourage computer vision researchers to consider building more biologically inspired models.

These results could be used to design a computer vision system with some sort of emulated visual periphery that could make it automatically robust to adversarial noise. The work could also inform the development of machines that are able to create more accurate visual representations by using some aspects of human peripheral processing.

“We could even learn about human vision by trying to get certain properties out of artificial neural networks,” Harrington adds.

Previous work had shown how to isolate “robust” parts of images, where training models on these images caused them to be less susceptible to adversarial failures. These robust images look like scrambled versions of the real images, explains Thomas Wallis, a professor for perception at the Institute of Psychology and Centre for Cognitive Science at the Technical University of Darmstadt.

“Why do these robust images look the way that they do? Harrington and Deza use careful human behavioral experiments to show that peoples’ ability to see the difference between these images and original photographs in the periphery is qualitatively similar to that of images generated from biologically inspired models of peripheral information processing in humans,” says Wallis, who was not involved with this research. “Harrington and Deza propose that the same mechanism of learning to ignore some visual input changes in the periphery may be why robust images look the way they do, and why training on robust images reduces adversarial susceptibility. This intriguing hypothesis is worth further investigation, and could represent another example of a synergy between research in biological and machine intelligence.”

This work was supported, in part, by the MIT Center for Brains, Minds, and Machines and Lockheed Martin Corporation.

Read More

Study examines how machine learning boosts manufacturing

Which companies deploy machine intelligence (MI) and data analytics successfully for manufacturing and operations? Why are those leading adopters so far ahead — and what can others learn from them?

MIT Machine Intelligence for Manufacturing and Operations (MIMO) and McKinsey and Company have the answer, revealed in a first-of-its-kind Harvard Business Review article. The piece chronicles how MIMO and McKinsey partnered for a sweeping 100-company survey to explain how high-performing companies successfully wield machine learning technologies (and where others could improve).

Created by the MIT Leaders for Global Operations (LGO) program, MIMO is a research and educational program designed to boost industrial competitiveness by accelerating machine intelligence’s deployment and understanding. The goal is to “find the shortest path from data to impact,” says managing director Bruce Lawler SM ’92.

As such, the McKinsey project encapsulates MIMO’s mission of demystifying effective machine-learning use. The survey studied companies across sectors, probing their digital, data analytics, and MI tech usage; goals (ranging from efficiency to customer experience to environmental impact); and tracking. Respondents were drawn from MIT and McKinsey’s wide-ranging networks.

“The study is probably the broadest that anybody has done in the space: 100 companies and 21 performance indicators,” says Vijay D’Silva SM ’92, a senior partner at McKinsey and Company who collaborated with MIMO on the project.

Overall, those who extracted the biggest gains from digital technologies had strong governance, deployment, partnerships, MI-trained employees, and data availability. They also spent up to 60 percent more on machine learning than their competitors.

One standout company is biopharmaceutical giant Amgen, which uses deep-learning image-augmentation to maximize efficiency of visual inspection systems. This technique pays off by increasing particle detection by 70 percent and reduces the need for manual inspections. AJ Tan PhD ’19, MBA ’21, SM ’21 was instrumental in the effort: He wrote his LGO thesis about the project, winning last year’s Best Thesis Award at graduation.

Lawler says Tan’s work exemplifies MIMO’s mission of bridging the gap between machine learning and manufacturing before it’s too late.

“We saw a need to bring these powerful new technologies into manufacturing more quickly. In the next 20 to 30 years, we’re going to add another 3 billion people to the globe, and they’re going to want the lifestyles that you and I enjoy. Those typically require manufactured things. How do we get better at translating natural resources into human well-being? One of the big vehicles for doing that is manufacturing, and one of the newest tools is AI and machine learning,” he says.

For the survey, MIMO issued each company a 30-page playbook analyzing how they compared against other companies across a range of categories and metrics, from strategy to governance to data execution. This will help them to target areas of opportunity or where to invest. Lawler hopes that this will be a longitudinal study with a wider scope and playbook each year — a vast but impactful undertaking with LGO brainpower as the driving engine.

“MIT was hugely important and critical to the piece of work and an amazing partner for us. We had talented MIT students on the team who did most of the analysis jointly with McKinsey, which improved the quality of the work as a result,” says D’Silva.

This collaborative approach is central to MIMO’s philosophy as an information convener and partner for the private sector. The goal is drive “an effective transformation in industries that achieve not just technical goals, but also business goals and social goals,” says Duane Boning, engineering faculty director at MIT LGO, and faculty lead at MIMO.

This fusion of research and collaboration is the logical next step for LGO, he says, because it’s always been at the forefront of problem-solving for global operations. Machine learning is definitely the latest big knowledge gap for many businesses, but not the first, and MIMO can teach companies how to apply it.

“[I liken] it to 30 years ago when LGO got started, when it was all about lean manufacturing principles. About 15 years ago, it was the supply chain idea. That sparked us to think — not just for our LGO students, but for the benefit of industry more broadly — for understanding this big change, for facilitating it, for doing research and getting connections into other actual research activities, we need some effort to catalyze this,” Boning says. “That’s [MIMO’s] real excitement: What are ideas that work? What are methodologies that work? What are technologies that work? And LGO students, in some sense, are the perfect vehicle to discover some of that.”

Read More