Machine learning (ML) models are fundamentally shaped by data, and building inclusive ML systems requires significant considerations around how to design representative datasets. Yet, few novice-oriented ML modeling tools are designed to foster hands-on learning of dataset design practices, including how to design for data diversity and inspect for data quality.
To this end, we outline a set of four data design practices (DDPs) for designing inclusive ML models and share how we designed a tablet-based application called Co-ML to foster the learning of DDPs through a collbaborative ML model…Apple Machine Learning Research