GENOT: Entropic (Gromov) Wasserstein Flow Matching with Applications to Single-Cell Genomics

Single-cell genomics has significantly advanced our understanding of cellular behavior, catalyzing innovations in treatments and precision medicine. However, single-cell sequencing technologies are inherently destructive and can only measure a limited array of data modalities simultaneously. This limitation underscores the need for new methods capable of realigning cells. Optimal transport (OT) has emerged as a potent solution, but traditional discrete solvers are hampered by scalability, privacy, and out-of-sample estimation issues. These challenges have spurred the development of neural…Apple Machine Learning Research