Preference based Reinforcement Learning (PbRL) has shown great promise in learning from human preference binary feedback on agent’s trajectory behaviors, where one of the major goals is to reduce the number of queried human feedback. While the binary labels are a direct comment on the goodness of a trajectory behavior, there is still a need for resolving credit assignment especially in limited feedback. We propose our work, PRIor On Rewards (PRIOR) that learns a forward dynamics world model to approximate apriori selective attention over states which serves as a means to perform credit…Apple Machine Learning Research