We study the problem of mean estimation of -bounded vectors under the constraint of local differential privacy. While the literature has a variety of algorithms that achieve the asymptotically optimal rates for this problem, the performance of these algorithms in practice can vary significantly due to varying (and often large) hidden constants. In this work, we investigate the question of designing the protocol with the smallest variance. We show that PrivUnit (Bhowmick et al. 2018) with optimized parameters achieves the optimal variance among a large family of locally private randomizers. To…Apple Machine Learning Research