This paper was accepted at the workshop at “Human-in-the-Loop Learning Workshop” at NeurIPS 2022.
Preference-based reinforcement learning (RL) algorithms help avoid the pitfalls of hand-crafted reward functions by distilling them from human preference feedback, but they remain impractical due to the burdensome number of labels required from the human, even for relatively simple tasks. In this work, we demonstrate that encoding environment dynamics in the reward function (REED) dramatically reduces the number of preference labels required in state-of-the-art preference-based RL frameworks. We…Apple Machine Learning Research